
BX

Extending Jubula

Jubula Team

BREDEX GmbH

June 29, 2012

June 29, 2012 1

Extending Jubula

BREDEX GmbH
Mauernstr. 33
38100 Braunschweig
Germany

Tel: +49-531 - 243 30 - 0
Fax: +49-531 - 243 30 - 99

www.bredex.de

GUIdancer is a registered trademark of BREDEX GmbH

Title: Extending Jubula
Author: Jubula Team
File: EXTEND
State: RELEASE
Version: V6.0.01011
Released by: BREDEX GmbH
Released at: June 29, 2012

2 June 29, 2012 EXTEND V6.0.01011

Contents

Contents

1 Introduction 5
1.1 What does a Tester Class look like? 5

2 General Steps to take 7
2.1 Requirements 7
2.2 Jubula Client Extension 8

2.2.1 Exporting the toolkit plugin to Jubula . 8
2.3 Jubula Server Extension 10
2.4 Where to put your Tester Classes 11
2.5 Jubula Example Extension 11

3 Issues 13
3.1 Jubula Updates and Upgrades 13

4 Functions 15

EXTEND V6.0.01011 June 29, 2012 3

Extending Jubula

When developing graphical applications, it is often necessary
or convenient to alter or combine the functionality of existing
toolkit components, or even to write entirely new ones, as the
requirements or concept of the software may dictate. These
new components generally cannot be tested by Jubula ”out
of the box”, as the behavior of custom components cannot be
predicted, or they may deviate from established standards of
”look and feel”. In order to overcome this limitation, Jubula
offers an extension API, which you can use to allow Jubula to
test your custom components.
The following sections describe the steps involved in extend-
ing Jubula.

4 June 29, 2012 EXTEND V6.0.01011

Introduction

Chapter 1

Introduction

Jubula starts, controls, and observes AUT’s using its server
component. In order for the AUT Agent to know how to con-
trol each element of a GUI, we have outfitted the AUT Agent
with a pluggable interface for graphic components. Using this
interface, each component that Jubula can test is described
in a so-called Implementation Class. Each GUI toolkit that
Jubula supports is described in a toolkit plugin.
Because of the great flexibility that user customization allows,
we have opened up this interface to our users. You can add
to the existing functionality of our officially-supported Imple-
mentation Classes, or provide support for in-house graphic
components by defining Implementation Classes of your own,
which we will refer to as Tester Classes .

1.1 What does a Tester Class look like?

The functionally important aspect of a Tester Class is that it
contains a public method for each Jubula test action which
will appear in the client. These methods are linked to testable
actions within a user-defined Jubula Plugin, which is described
later in this handbook. Each plugin provides a XML config-
uration file, which tells Jubula which method to call, what
parameters it needs to send, as well as string externalization
information.

EXTEND V6.0.01011 June 29, 2012 5

Extending Jubula

6 June 29, 2012 EXTEND V6.0.01011

General Steps to take

Chapter 2

General Steps to take

The following chapter describes the general steps to take when
extending Jubula with custom defined components and ac-
tions. Detailed information for each step can be found in the
corresponding example extension files in ”InstallationDirecto-
ry/examples/development/extension/src”
In general you always have to extend two parts of Jubula

• The Jubula Client by writing your own Toolkit-Plugin:
This will tell the client which new components and actions
are available.

• The Jubula Server Component by putting a compiled class
file to a specific directory:
This is the part which is acutally performing the actions on
the new component.

2.1 Requirements

To create your own Jubula extension, you need:

• Jubula 2.0 or later

• Eclipse 3.4 or later

• JDK 5.0

You must also have write access in the directories:
InstallationDir\Jubula\plugins
InstallationDir\server\lib\extImplClasses

EXTEND V6.0.01011 June 29, 2012 7

Extending Jubula

2.2 Jubula Client Extension

The following steps have to be done to extend the Jubula
client:

1. Create an eclipse plug-in project and a corresponding fea-
ture project.

2. Set ”InstallationDir\Jubula\plugins” as your target platform

3. Define plugin dependencies to the toolkit support plugin

4. Enter the toolkit support plugin in your toolkit plugin project

5. Create a MyToolkitProvider class

6. Define and configure the toolkit extension at the extension
point

7. Create a myComponentExtension.xml

• Extend existing Jubula components with new actions

• Derive components from existing Jubula components

• Define a new component

8. Manage the i18n keys

9. Export the toolkit feature to Jubula

Under ”InstallationDirectory/examples/development/extension/src”
you will find a
”eclipseProjects_ExampleSwingClientExtension.zip” which con-
tains an example Jubula Client Extension for the Swing com-
ponent ”JSlider” as well as a corresponding feature project.
These projects are a showcase for steps 1-8.

2.2.1 Exporting the toolkit plugin to Jubula

The only steps you have to do after importing the projects into
your Eclipse workspace and setting the target platform (step
no. 2) is to export the feature to an update site and then use
the update site to install the feature into the Jubula you want
to extend.
To export the toolkit feature to an update site:

1. In the package explorer, right click on the feature project
(ex. org.eclipse.jubula.examples.extension.swing.feature)
and select: Export... from the context-sensitive menu.

8 June 29, 2012 EXTEND V6.0.01011

General Steps to take

2. In the dialog that appears, select Deployable features and
click ”Next”.

3. In the next dialog, in the Available Features area, ensure
that the checkbox next to the feature you wish to export is
selected.

4. In the Destination tab, enter the location where the fea-
ture’s update site should be exported to in the Directory
field. This can be any writable directory. This directory will
serve as an update site, which can later be used to install
your feature into Jubula.

5. In the Options tab, ensure that the Package as individual
JAR archives checkbox is selected and click ”Finish”.

To install the toolkit feature from the update site:

1. Start Jubula and select Help→ Install new software...
from the main menu.

2. In the Install dialog that appears, click the Add... button.

3. In the Add Repository dialog that appears, click the Local...
button.

4. In the file selection dialog that appears, navigate to the
directory that contains your update site and confirm the
dialog.

5. Click OK to exit the Add Repository dialog. The active
dialog should now be Install.

6. Ensure that the Group items by category checkbox is des-
elected. Your feature should be visible in the central table
of the dialog.

7. Ensure that the checkbox next to your feature is selected
and click Next.

8. Confirm the Installation Details by again clicking Next.

9. Accept the license agreement terms and click Finish.

10. A warning dialog may appear to warn of unsigned con-
tent. Click OK in this dialog if the feature comes from a
trusted source (ex. if you have written the software your-
self, as in this example). This will begin installation.

EXTEND V6.0.01011 June 29, 2012 9

Extending Jubula

11. After installation, a dialog appears suggesting that Jubula
be restarted in order to safely finish the update / instal-
lation. Click Restart Now to perform the restart. Once
the restart completes, your extension feature has been in-
stalled in Jubula.

2.3 Jubula Server Extension

AUT’s are controlled by the server. There exists a Tester Class
for each component that Jubula supports. This class imple-
ments the test actions that can be carried out on the compo-
nent, To add your component to Jubula, you need to write a
Tester Class for it.
Please follow the following guidelines for your Tester Classes:

• Your build path must contain the following three JAR files:
org.eclipse.jubula.rc.swing.jar, org.eclipse.jubula.rc.common.jar,
and org.eclipse.jubula.tools.jar, which contain
our server classes and some utility classes. They are located
in your Jubula installation directory under server/lib.

• The class must be compatible with Java 1.4.

• Its declared package name must begin with:
”org.eclipse.jubula.rc.swing.swing.implclasses”

• It must implement the following interface:
”org.eclipse.jubula.rc.
.swing.swing.implclasses.IImplementationClass”

• It must provide public methods for each action that is im-
plemented for the component.

• Each method that implements an action must throw the
following exception upon error: org.eclipse.jubula.rc.common.exception.StepExecutionException
This way, Jubula will be able to know that an action has
failed.

Under ”InstallationDirectory/examples/development/extension/src”
you will find a
”eclipseProjects_ExampleSwingServerExtension.zip” which con-
tains an example Jubula Server Extension for the Swing com-
ponent ”JSlider”.
Now that you have written your Tester Class, you still need
to make Jubula aware of its presence. This is done by first
putting the compiled class in a location where Jubula can find

10 June 29, 2012 EXTEND V6.0.01011

General Steps to take

it, then by altering the configuration file, so that Jubula knows
which component it refers to, and how it can be used. The
following sections explain how this is done.

2.4 Where to put your Tester Classes

If you extend the SwingToolkitPlugin, your compiled Tester
Classes (*.class files) need to be placed in your Jubula in-
stallation directory under the following path:
server/lib/extImplClasses ,
using a directory structure that corresponds to the fully-qualified
package name. Therefore, your Tester Classes should be in
some sub-directory of the following path within your Jubula
installation directory:
server/lib/extImplClasses/org/eclipse
/jubula/swing/swing/implclasses

As Eclipse already stores compiled classes according to this
structure, you need only (recursively) copy the directory struc-
ture, starting with org, into the extImplClasses directory.
Alternatively, you may place a JAR containing the above struc-
ture (also starting with org) into the extImplClasses di-
rectory.

Please note that if the extImplClasses directory does
not already exist, you must create it in the above-
mentioned location.

2.5 Jubula Example Extension

Jubula comes with a complete example extension implemen-
tation in source and binaries. This example extension extends
Jubula for the Swing component ”JSlider”. After deploy-
ing the Jubula Client plug-in and the Jubula Server extension
you should be able to test the Swing component ”JSlider” at
”Graphics Component”-level with Jubula. The example ex-
tension code and binaries can be found in the ”InstallationDi-
rectory/examples/development/extension”:

• AUT
This directory contains a trivial example AUT which uses

EXTEND V6.0.01011 June 29, 2012 11

Extending Jubula

the originally unsupported component "JSlider". After in-
stalling the extensions, your Jubula will be able to test this
new component.

• src
This directory contains several archive files which are all
importable Eclipse projects:

– eclipseProjects_ExampleSwingAUT.zip
This is the source code project for the example Swing
AUT.

– eclipseProjects_ExampleSwingClientExtension.zip
This is the source code project of the extension plug-in
for the Jubula Client.

– eclipseProjects_ExampleSwingServerExtension.zip
This is the source code project of the extension for the
Jubula Server.

• bin
This directory contains the compiled sources as directly de-
ployable units.

12 June 29, 2012 EXTEND V6.0.01011

Issues

Chapter 3

Issues

When working with extended or user-defined Tester Classes,
certain issues may arise which influence the normal operation
of Jubula. The following explains some of these issues and
how to avoid problems or work around them, should they
arise.

3.1 Jubula Updates and Upgrades

With a new version of Jubula, you need to ensure that your
toolkits and tester classes are updated in line with the new
Jubula version, as described in the sections earlier in this man-
ual.

EXTEND V6.0.01011 June 29, 2012 13

Extending Jubula

14 June 29, 2012 EXTEND V6.0.01011

Functions

Chapter 4

Functions

Functions represent program code that is evaluated during
test execution. In order to define a new Function, you will
need to create an extension for the extension point org.eclipse.jubula.client.core.functions,
which can be found in the bundle org.eclipse.jubula.client.core.
This bundle also contains reference implementations of the
extension point.

EXTEND V6.0.01011 June 29, 2012 15

	Introduction
	What does a Tester Class look like?

	General Steps to take
	Requirements
	Jubula Client Extension
	Exporting the toolkit plugin to Jubula

	Jubula Server Extension
	Where to put your Tester Classes
	Jubula Example Extension

	Issues
	Jubula Updates and Upgrades

	Functions

