
Prof. Dr.
Stephan Kleuker

1OOAD

Objektorientierte Analyse und
Design

Prof. Dr. Stephan Kleuker

Kernziele:

• Strukturen für erfolgreichen SW-Entwicklungsprozess
kennen lernen

• Realisierung: Von der Anforderung zur Implementierung

Video

Video

https://youtu.be/QlnyKi42TwM

Prof. Dr.
Stephan Kleuker

2OOAD

• Prof. Dr. Stephan Kleuker, geboren 1967, verheiratet, 2
Kinder

• seit 1.9.09 an der FH, Professur für Software-Entwicklung

• vorher 4 Jahre FH Wiesbaden

• davor 3 Jahre an der privaten FH Nordakademie in Elmshorn

• davor 4 ½ Jahre tätig als Systemanalytiker und
Systemberater in Wilhelmshaven

• s.kleuker@hs-osnabrueck.de, Zoom-Termine kurzfristig per
E-Mail vereinbar

Ich

Prof. Dr.
Stephan Kleuker

3OOAD

Ablauf

• 2h Vorlesung + 2h Praktikum = 5 CP

• Praktikum (3er oder 4er Gruppen):

– Anwesenheit = (Übungsblatt vorliegen + Lösungsversuche
zum vorherigen Aufgabenblatt + Fragen)

– 11 Übungsblätter mit insgesamt ca. 100 Punkten

– Praktikum mit 85 oder mehr Punkten bestanden

• Prüfung: Hausarbeit, 3/4er-Gruppen, Themen s. Webseite

• Folienveranstaltungen sind schnell, bremsen Sie mit Fragen

• steuern Sie Ihr Lerntempo mit den Videos selbst (Pausetaste)

• von Studierenden wird hoher Anteil an Eigenarbeit erwartet

• Melden Sie sich in ILIAS zu VL und Praktikum an, Freischaltung
sollte erfolgt sein

• Praktikum startet „sofort“ an nächsten geplanten Termin

Prof. Dr.
Stephan Kleuker

4OOAD

Verhaltenscodex

• Vorlesung bis vorgegebenen Vorlesungsende durcharbeiten;
sinnvoll eher fertig sein, um früh Fragen stellen zu können

• Folienveranstaltungen sind schnell, bremsen Sie mit der Stopp-
Taste, sehen sie in Gruppen, diskutieren Sie gesehenes, stellen
Sie Fragen, die noch beantwortet werden sollen

• Fragen zur Vorlesungszeit oder sonst per E-Mail

• von Studierenden wird hoher Anteil an Eigenarbeit erwartet

• spätestens zwei Tage vor der VL liegen abends Unterlagen im
Netz http://kleuker.iui.hs-osnabrueck.de/index.html

• Probleme sofort melden

• Wer aussteigt teilt mit warum

http://kleuker.iui.hs-osnabrueck.de/index.html

Prof. Dr.
Stephan Kleuker

5OOAD

Praktikum genauer
• Praktikumsaufgaben müssen jeweils als Ergebnisse im Praktikum

der Folgewoche vorliegen; diese werden dort abgenommen

• Falls jemand nicht kommt, sind die Ergebnisse per E-Mail
spätestens am Praktikumstag an den Praktikumsleiter zu
schicken; werden in der Folgewoche abgenommen

• Aufgaben dürfen in Gruppen von maximal vier (minimal drei)
Studierenden bearbeitet werden; jeder muss in der Lage sein,
jedes Gruppenergebnis vorzustellen (gerade auch bei evtl.
späteren Abnahmen)

• Treten ähnliche Ergebnisse bei mehr als einer Arbeitsgruppe auf,
werden diese bei allen Arbeitsgruppen gestrichen

• KI-Unterstützung ist zu dokumentieren /was/wo/warum)

• bei Lösungen aus dem Internet oder durch KI ist das Praktikum
beendet

Prof. Dr.
Stephan Kleuker

6OOAD

Praktikum - Aufgabenbearbeitung

• Bearbeitung in 3er/4er-Gruppen

• sinnvoll: Pairprogramming, zwei Personen an einem Rechner

• Ansatz: eigene Tastatur und Maus mitbringen

USB-Stick
(lokaler
Speicher),
neben Z:

private
Tastatur
und Maus
von Studi

Prof. Dr.
Stephan Kleuker

7OOAD

Veranstaltung im Studienkontext

+ Sie haben Kenntnisse in der OO-Programmierung (C++, Java)

+ [Sie können Datenbanken (Überschneidung bei Modellierung)]

= Sie können erfolgreich an dieser Veranstaltung teilnehmen

+ nächstes Semester: Veranstaltung Software-Engineering Projekt
(Vorlesungsanteil zur Organisation von SW-Projekten in
Unternehmen, großes Praktikumsprojekt, 10 CP)

Prof. Dr.
Stephan Kleuker

8OOAD

Skript = Buch

Hinweis:

Aktuelle Bücher des

Springer-Verlags

Können über Web-

Seite der Bibliothek

als PDF legal

heruntergeladen

werden,

Fachdatenbanken

(DBIS)

Prof. Dr.
Stephan Kleuker

9OOAD

weitere Literatur

Generell lesenswert:

• Jochen Ludewig, Horst Lichter, Software Engineering:
Grundlagen, Menschen, Prozesse, Techniken, dpunkt.verlag,
Heidelberg

• Bernd Oestereich, Axel Scheithauer, Analyse und Design mit
UML 2.5, Oldenbourg, München

• C. Rupp, S. Queins, B. Zengler, UML 2 glasklar, Hanser,
München Wien

• Ian Sommerville, Software Engineering, Addison Wesley,
Boston

• (jeweils aktuellste Auflage)

• Spezialliteratur wird zum jeweiligen Kapitel genannt

Prof. Dr.
Stephan Kleuker

10OOAD

Werkzeuge

• Programmierung mit Eclipse, Modellierung mit UMLet
http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf

• UMLet ist (fast) reines Malwerkzeug für verschiedene UML-
Diagrammarten (etwas instabiler unter Linux)

• gibt SEU auf HS-Rechner identisch für zu Hause C:\kleukersSEU; ist
verpflichtend zu nutzen

• gibt professionellere Werkzeuge, die aber nicht generell frei
verfügbar sind (jedes Unternehmen kocht hier seinen eigenen
„Werkzeugbrei“ zusammen)

• Bedeutung der Diagramme im Entwicklungsprozess unterschiedlich
(„fokussiert auf aktuelle UML-Diagramme“ oder nur „zentrales
Hilfsmittel für Skizzen“)

http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf

Prof. Dr.
Stephan Kleuker

11OOAD

Inhaltsverzeichnis

2 Prozessmodellierung

1 Motivation von Software-Engineering

3 Vorgehensmodelle

4 Anforderungsanalyse

5 Grobdesign

6 Vom Klassendiagramm zum Programm

8 Optimierung des Designmodells

7 Konkretisierungen im Feindesign

9 Implementierungsaspekte

10 Oberflächengestaltung

11 Qualitätssicherung

12 Umfeld der Software-Entwicklung nächstes

Semester

kurz, genauer

nächstes Semester

andere Veranstaltung

Wahlfach

Prof. Dr.
Stephan Kleuker

12OOAD

2. Prozessmodellierung

2.1 Unternehmensprozesse

2.2 Prozessmodellierung mit Aktivitätsdiagrammen

Video

Video

https://youtu.be/3YhXjxLy5xI

Prof. Dr.
Stephan Kleuker

13OOAD

Unternehmensführung

Unterstützung

Controlling

Vertrieb

Projektmanagement

Umfeld von SW-Projekten

SW-Projekt

2.1

Prof. Dr.
Stephan Kleuker

14OOAD

Prozesse in Unternehmen aus SW-Projektsicht

(Annahme SW ist wichtiges Kernprodukt)

• Unternehmensführung gibt Geschäftsfelder und Strategien vor

• Vertriebsleute müssen potenzielle auftraggebende Firmen
finden, überzeugen und Aufträge generieren

• Aufträge führen zu Verträgen, die geprüft werden müssen

• Das Personal für Aufträge muss ausgewählt werden und zur
Verfügung stehen

• Der Projektablauf muss beobachtet werden, Abweichungen z.
B. in Zeitplan müssen zu Steuerungsmaßnahmen führen

• Die SW muss realisiert werden

Prof. Dr.
Stephan Kleuker

15OOAD

Rollenbegriff

• Unterschiedliche Menschen arbeiten in verschiedenen Rollen
zusammen

• Rolle: genaue Aufgabenbeschreibung, mit Verantwortlichkeiten
(was soll gemacht werden) und Kompetenzen (welche
Entscheidungen können getroffen werden, z. B. „Arbeit
anweisen“)

• Mensch kann in einem Unternehmen/Projekt mehrere Rollen
haben

• Eine Rolle kann von mehreren Menschen besetzt werden

• Beispielrollen: Vertriebsleitung, Vertriebsmitarbeit,
Projektleitung, mitarbeitende Personen in der
Anforderungsanalyse, Entwicklung, Qualitätssicherung

Prof. Dr.
Stephan Kleuker

16OOAD

Prozessbegriff

Prozessbeschreibungen regeln die Zusammenarbeit verschiedene
Menschen (genauer Rollen),

• Was soll in diesem Schritt getan werden?
• Wer ist verantwortlich für die Durchführung des Schritts?
• Wer arbeitet in welcher Rolle in diesem Schritt mit?
• Welche Voraussetzungen müssen erfüllt sein, damit der Schritt

ausgeführt werden kann?
• Welche Teilschritte werden unter welchen Randbedingungen

durchgeführt?
• Welche Ergebnisse kann der Schritt abhängig von welchen

Bedingungen produzieren?
• Welche Hilfsmittel werden in dem Prozessschritt benötigt?
• Welche Randbedingungen müssen berücksichtigt werden?
• Wo wird der Schritt ausgeführt?
Prozesse sind zu dokumentieren und zu pflegen

Prof. Dr.
Stephan Kleuker

17OOAD

Zur Beschreibung werden folgende elementare Elemente genutzt:

Prozessmodellierung mit Aktivitätsdiagrammen

genau ein Startpunkt

einzelner Prozessschritt (Aktion)

 Kontrollknoten (Entscheidung)

ausgehenden Kanten: Boolesche
Bedingungen in eckigen Klammern

Kontrollknoten (Zusammenführung)

Endpunkt (Terminierung)

2.2

Prof. Dr.
Stephan Kleuker

18OOAD

Parallelität in Prozessen
• Waagerechter oder senkrechter

Strich steht für mögliche
Prozessteilung (ein Pfeil rein,
mehrere raus) oder
Zusammenführung (mehrere
Pfeile rein, ein Pfeil raus)

• Am zusammenführenden Strich
steht Vereinigungsbedingung, z.
B.
– {und}: alle Aktionen

abgeschlossen
– {oder}: (mindestens) eine

Aktion abgeschlossen
• UML 1.1 hatte andere

Restriktionen

Prof. Dr.
Stephan Kleuker

19OOAD

Beteiligte, Produkte, Werkzeuge (optional)

• Beteiligte Personen, Produkte,
Werkzeuge werden hier als
einfache Datenobjekte
modelliert, dabei steht zunächst
die Objektart und dann die
genaue Bezeichnung

• In eckigen Klammern kann der
Zustand eines Objekts
beschrieben werden

• neben „verantwortlich“ noch
„mitwirkend“ möglich

• auch Entscheidungen haben
verantwortliche Personen

Prof. Dr.
Stephan Kleuker

20OOAD

Anmerkungen

• immer erst ohne "Kästen"
modellieren

• häufig alternative
Darstellungen für Rollen
und Werkzeuge

• Variante: nur Ablauf, Rest
in Textdokumentation

• Buch alte Version: alle
Linien durchgezogen

Prof. Dr.
Stephan Kleuker

21OOAD

Beispiel: Vertrieb (1/4)

• Zu modellieren ist der Vertriebsprozess eines
Unternehmens, das SW verkauft, die individuell für das
beauftragende Unternehmen angepasst und erweitert werden kann

• Modelle werden wie SW inkrementell erstellt; zunächst der (bzw.
ein) typische Ablauf, der dann ergänzt wird

• Typisches Szenario: Mitarbeitende Person des Vertriebs kontaktiert
potenzielles beauftragendes Unternehmen und arbeitet individuelle
Wünsche heraus; Fachabteilung erstellt Kostenvoranschlag;
beauftragendes Unternehmen unterschreibt Vertrag; Projekt geht in
Prozess Projektdurchführung (nicht modelliert)

• Beteiligt: Vertriebsmitarbeit, beauftragendes Unternehmen,
Fachabteilung

• Produkt: Individualwünsche, Kostenvoranschlag, Vertrag
• Aktionen: Unternehmensgespräch, Kostenkalkulation,

Vertragsverhandlung

Video

Video

https://youtu.be/O2HCdvgs_HI

Prof. Dr.
Stephan Kleuker

22OOAD

Beispiel: Vertrieb (2/4)

Prof. Dr.
Stephan Kleuker

23OOAD

Beispiel: Vertrieb (3/4)

nächster Schritt: Einbau alternativer Abläufe

• Unternehmen ist am Angebot nicht interessiert

• In den Vertragsverhandlungen werden neue
Rahmenbedingungen formuliert, so dass eine Nachkalkulation
notwendig wird [nächste Folie]

• Bis zu einem Vertragsvolumen von 20 T€ entscheidet die
Abteilungsleitung, darüber die Geschäftsleitung ob
vorliegender Vertrag abgeschlossen werden soll oder
Nachverhandlungen nötig sind

• Die Fachabteilung hat Nachfragen, die die mitarbeitende
Person des Vertriebs mit dem potenziell beauftragenden
Unternehmen klären muss

Prof. Dr.
Stephan Kleuker

24OOAD

Beispiel: Vertrieb (4/4)

Prof. Dr.
Stephan Kleuker

25OOAD

Prozessverfeinerung: Kosten kalkulieren

Anmerkung: Verantwortliche weggelassen, da
immer „Projektbegleitung der Fachabteilung“

Prof. Dr.
Stephan Kleuker

26OOAD

Modellierungsfalle

• Basierend auf Erfahrungen mit Flussdiagrammen könnte man zu
folgender Modellierung kommen

• Dies würde nach UML-Semantik bedeuten, dass für die Aktion
Vertragsverhandlung zwei Kostenvorschläge (initial und
aktualisiert, zwei eingehende Kanten) vorliegen müssten

• Wenn verschiedenen Wege zu einer Aktion führen sollen, muss
vor der Aktion ein Zusammenführungs-Kontrollknoten stehen

Prof. Dr.
Stephan Kleuker

27OOAD

Modellierungsvarianten

Prof. Dr.
Stephan Kleuker

28OOAD

Problem Lesbarkeit

• Diagramme können leicht komplex werden

Lösungsmöglichkeiten:

• Verteilung von Diagrammen auf mehrere Seiten mit
Ankerpunkten

• Verzicht, alle Elemente in einem Diagramm darzustellen (z. B.
Produkte weglassen; dies nur in der immer zu ergänzenden
Dokumentation erwähnen)

• Diagramme hierarchisch gestalten; eine Aktion kann durch ein
gesamtes Aktivitätsdiagramm verfeinert werden, z. B. ist
„Kosten kalkulieren“ eigener Prozess; dies sollte im Modell
sichtbar werden

Prof. Dr.
Stephan Kleuker

29OOAD

Problem Abstraktionsgrad

• Frage: Wann nur eine Aktion, wann mehrere Aktionen

• Indikator: Mehrere Aktionen zusammenfassen, wenn

– nur ein Produkt entsteht, das ausschließlich in diesen Aktionen
benötigt wird („lokale Variable“)

– oder diese von nur einer Person/Rolle bearbeitet werden

• Typischerweise Prozesshierarchie:

– Unternehmensebene; d.h. ein Diagramm für jeden Prozess der
Kern-, Management- und Supportprozesse

– Prozessebene: Verfeinerung des Prozesses, so dass alle nur
intern sichtbaren Rollen und Produkte sichtbar werden

– Arbeitsprozess: Individuelle Beschreibung der Arbeitsschritte
einer Rolle für eine/ mehrere Aktionen

• Probleme: Flexibilität und Akzeptanz

Prof. Dr.
Stephan Kleuker

30OOAD

1. Motivation von Software-
Engineering

Video

Video

https://youtu.be/05wDznzSlqE

Prof. Dr.
Stephan Kleuker

31OOAD

Historie des SW-Engineering (1/4)

• Ende 60er
– Bedarf für Softwaretechnik neben der reinen

Programmierung erstmals voll erkannt (u. a. NATO Software
Engineering Conference, Garmisch, 1968)

– Vorher sind zahlreiche große Programmentwicklungen
(möglich durch verbesserte Hardware) gescheitert

– Arbeiten von Dijkstra 1968 (u.a. gegen Verwendung von
GOTO) und Royce 1970 (Software-Lebenszyklus),
• Top-Down-Entwurf, graphische Veranschaulichungen

(Nassi-Shneiderman Diagramme)
• Mitte 70er

– Top-Down-Entwurf für große Programme nicht ausreichend,
zusätzlich Modularisierung erforderlich

– Entwicklung der Begriffe Abstrakter Datentyp,
Datenkapselung und Information Hiding

Prof. Dr.
Stephan Kleuker

32OOAD

Historie des SW-Engineering (2/4)

• Ende 70er
– Bedarf für präzise Definition der Anforderungen an ein

Softwaresystem, Entstehen von Vorgehensmodellen, z. B.
Structured Analysis Design Technique (SADT)

• 80er Jahre
– Vom Compiler zur Entwicklungsumgebung (Editor,

Compiler, Linker, symbolischer Debugger, Source Code
Control Systems)

– Weiterentwicklung der Modularisierung und der
Datenkapselung zur objektorientierten Programmierung

• 90er Jahre
– Objektorientierte Programmierung nimmt zu (wieder

ausgehend von der Implementierung)
– Neue Programmiersprache Java (ab Mitte 80er C++)
– Anwendungs-Rahmenwerke (Application Frameworks) zur

Vereinfachung von Design und – vor allem –
Programmierung

Prof. Dr.
Stephan Kleuker

33OOAD

Historie des SW-Engineering (3/4)
• 90er Jahre

– Geeignete Analyse- und Entwurfsmethoden entstehen
(Coad/Yourdon, Rumbaugh, Booch, Jacobson und andere)

• 1995
– Vereinigung mehrerer Ansätze zunächst als Unified Method

(UM) von Booch und Rumbaugh, dann kommt Jacobson hinzu
(Use Cases).

– 3 Amigos definieren die Unified Modeling Language (UML) als
Quasi-Standard.

• 1997
– UML in der Version 1.1 bei der OMG (Object Management

Group) zur Standardisierung eingereicht und angenommen
– UML ist jedoch keine Entwicklungsmethode (Phasenmodell),

nur eine Beschreibungssprache
• 1999

– Entwicklungsmethode: Unified Process (UP) und Rational
Unified Process (RUP) (erste Version)

Prof. Dr.
Stephan Kleuker

34OOAD

Historie des SW-Engineering (4/4)

• Heute

– Vorgehensweisen auf individuelle Projektanforderungen
abgestimmt

– CASE-Methoden und –Tools orientieren sich an der UML

– Stand 07/2011: UML 2.4.1

– Stand 09/2015: UML 2.5

– Stand 12/2017: UML 2.5.1 (http://www.uml.org/)

– Aufbauend auf Analyse und Design erzeugen
Codegeneratoren Programmgerüste

– Haupttätigkeiten bei Softwareentwicklung sind Analyse und
Design, vieles andere versucht man zu automatisieren (!?)

http://www.uml.org/

Prof. Dr.
Stephan Kleuker

35OOAD

Warum scheitern SW-Projekte (kleine Auswahl)

• Die Software wurde wesentlich zu spät geliefert

• Die Software erfüllt nicht die Wünsche der nutzenden Personen

• Die Software läuft nicht auf den vereinbarten Rechnersystemen,

sie ist zu langsam oder kommt mit dem Speicher nicht aus

• Die Software kann nicht erweitert werden oder mit anderer

Software zusammenarbeiten

• …

Prof. Dr.
Stephan Kleuker

36OOAD

Antworten des Software-Engineering

• 1967: Prägung des Begriffs Software-Krise

• Lösungsansätze:

– Programmiersprachen: kontinuierliche Einführung von
Abstraktion (Datentypen, Funktionen, Modulen, Klassen,
Bibliotheken, Frameworks)

– Dokumentation: Einheitliche Notationen für
Entwicklungsergebnisse (UML)

– Entwicklungsprozesse: Aufgabenbeschreibungen, wann was
wie gemacht wird

– Vorgehensmodelle: Entwicklung passt sich an Bedürfnisse
der nutzenden/bezahlenden Personen an

Prof. Dr.
Stephan Kleuker

37OOAD

Definitionsversuch Software-Engineering

Zusammenfassend kann man Software-Engineering als die
Wissenschaft der systematischen Entwicklung von Software,
beginnend bei den Anforderungen bis zur Abnahme des fertigen
Produkts und der anschließenden Wartungsphase definieren. Es
werden etablierte Lösungsansätze für Teilaufgaben
vorgeschlagen, die häufig kombiniert mit neuen Technologien,
vor Ihrer Umsetzung auf ihre Anwendbarkeit geprüft werden.
Das zentrale Mittel zur Dokumentation von Software-
Engineering-Ergebnissen sind UML-Diagramme.

Prof. Dr.
Stephan Kleuker

38OOAD

3. Vorgehensmodelle

nur kurzer Einblick (nur als Vorausschau, nicht Teil der VL)

Video

Video

https://youtu.be/N1XIRnDqv2w

Prof. Dr.
Stephan Kleuker

39OOAD

Die Phasen der SW- Entwicklung

• Erhebung und Festlegung des WAS mit
Rahmenbedingungen

• Klärung der Funktionalität und der
Systemarchitektur durch erste Modelle

• Detaillierte Ausarbeitung der
Komponenten, der Schnittstellen,
Datenstrukturen, des WIE

• Ausprogrammierung der
Programmiervorgaben in der Zielsprache

• Zusammenbau der Komponenten,
Nachweis, dass Anforderungen erfüllt
werden, Auslieferung

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Prof. Dr.
Stephan Kleuker

40OOAD

Wasserfallmodell

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Merkmale:

Phasen werden von oben nach unten

durchlaufen

Vorteile:

- Plan auch für IT-unerfahrene verständlich

- einfache Meilensteinplanung

- lange Zeit häufigste Prozessgrundlage

Nachteile:

- Anforderungen müssen 100%-ig sein

- späte Entwicklungsrisiken werden spät

erkannt

- Qualität des Design passt sich Zeitplan an

Optimierung:

es ist möglich, in die vorherige Phase zu

springen

Prof. Dr.
Stephan Kleuker

41OOAD

Prototypische Entwicklung

Merkmale:

- potenzielle Probleme frühzeitig

identifiziert,

- Lösungsmöglichkeiten im Prototypen

gefunden, daraus Vorgaben abgeleitet

Vorteile:

- frühzeitige Risikominimierung

- schnelles erstes Projektergebnis

Nachteile:

- Anforderungen müssen fast 100%-tig

sein

- Prototyp (illegal) in die Entwicklung

übernommen

- Endergebnis zu schnell erwartet

Optimierung:

es ist möglich, in die vorherige Phase

zu springen (auch vorheriges Modell)

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Anforderungs-
analyse

Grobdesign

Feindesign

Implemen-
tierung

Test und
Integration

Prototyp

Prof. Dr.
Stephan Kleuker

42OOAD

Iterative Entwicklung

Merkmale:
- Erweiterung der Prototypidee; SW wird in

Iterationen entwickelt
- In jeder Iteration wird System weiter verfeinert
- In ersten Iterationen Schwerpunkt auf Analyse

und Machbarkeit; später auf Realisierung
große Vorteile:
- dynamische Reaktion auf Risiken
- Teilergebnisse mit auftraggebenden Personen

diskutierbar
Nachteile im Detail:
- schwierige Projektplanung
- schwierige Vertragssituation
- zu schnelles Endergebnis erwartet (GUI = fertig)
- Anforderungen als beliebig änderbar angesehen

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Prof. Dr.
Stephan Kleuker

43OOAD

Fertigstellung mit Iterationen

0% 100%Fertigstellungsgrad

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

1. 2. 3. 4.
Iterationen

Prof. Dr.
Stephan Kleuker

44OOAD

Iterativ Inkrementelle Entwicklung (State of the Art)

Merkmal:

- Projekt in kleine Teilschritte zerlegt

- pro Schritt neue Funktionalität

(Inkrement) + Überarbeitung

existierender Ergebnisse (Iteration)

- n+1-ter Schritt kann Probleme des n-

ten Schritts lösen

Vorteile:

- siehe „iterativ“

- flexible Reaktion auf neue funktionale

Anforderungen

Nachteile:

- siehe „iterativ“ (etwas verstärkt)

Optimierung/Anpassung:

Anforderungsanalyse am Anfang

intensiver durchführen

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Bsp.: vier Inkremente

Prof. Dr.
Stephan Kleuker

45OOAD

Agile Methoden – Beispiel Scrum

Scrum-Meeting

Arbeitstag

Sprint Review

Sprint Retrospective Sprint

~21 Arbeitstage

Planung

für Sprint

Product

backlog

Aufgabe 1

Aufgabe 2

...

Sprint

backlog

Teilaufgabe 1

Teilaufgabe 2

...

Prof. Dr.
Stephan Kleuker

46OOAD

4. Anforderungsanalyse

4.1 Stakeholder und Ziele
4.2 Klärung der Hauptfunktionalität (Use Cases)
4.3 Beschreibung typischer und alternativer Abläufe
4.4 Ableitung funktionaler Anforderungen
4.5 Nicht-funktionale Anforderungen
4.6 Lasten- und Pflichtenheft

Literatur:
• [RS] C. Rupp, SOPHIST GROUP, Requirements- Engineering und – Management, Hanser

Fachbuchverlag
• [OW] B. Oestereich, C. Weiss, C. Schröder, T. Weilkiens, A. Lenhard, Objektorientierte

Geschäftsprozessmodellierung mit der UML, dpunkt.Verlag

Video

Video

https://youtu.be/VDrwjQXyyjk

Prof. Dr.
Stephan Kleuker

47OOAD

so nicht (1/4): Beispiel-Szenario

Zur Stundenerfassung und Abrechnung werden von den in
Projekten mitarbeitenden Personen spezielle Excel-Tabellen
jeden Freitag ausgefüllt und am Montag von der Projektleitung
bei der Verwaltung abgegeben.

Die zuständige Sachbearbeitung überträgt dann die für den
Projektüberblick relevanten Daten manuell in ein SAP-System.
Dieses System generiert automatisch eine Übersicht, aus der
die Geschäftsführung ablesen kann, ob die Projekte wie
gewünscht laufen.

Dieser Bericht liegt meist am Freitag der Woche vor. Die
Bearbeitungszeit ist der Geschäftsführung zu lang, deshalb soll
der Arbeitsschritt automatisiert werden.

Prof. Dr.
Stephan Kleuker

48OOAD

so nicht (2/4): Die Projektplanung

• Projekt „Projektberichtsautomatisierung“ (ProAuto)
beschlossen

• Leiter der hausinternen IT-Abteilung über anstehende Aufgabe
informiert, er erhält Beschreibung der Excel-Daten und
gewünschter SAP-Daten

• Leiter stellt fest, dass seine Abteilung Know-how und die
Kapazität hat Projekt durchzuführen, legt Geschäftsführung
Projektplan mit Aufwandsschätzung vor

• Geschäftsführung beschließt, Projekt intern durchzuführen,
kein externes Angebot einzuholen

Prof. Dr.
Stephan Kleuker

49OOAD

so nicht (3/4): Die Schritte zum Projektmisserfolg

• IT-Abteilung analysiert Excel-
Daten und Daten die in das
SAP-System eingefügt
werden können

• Kurz nach dem geschätzten
Projektende liegt technisch
saubere Lösung vor, Excel
wurde um Knopf erweitert;
Projektleitung kann per
Knopfdruck die Daten nach SAP überspielen

• Vier Wochen nach Einführung wird die Leitung der IT-
Abteilung entlassen, da Daten zwar jeden Montag vorliegen,
sie aber nicht nutzbar sind; erzürnte Geschäftsleitung hat
deshalb falsche Entscheidungen getroffen

• Projekt wird an Beratungsfirma neu vergeben

ProAuto

Prof. Dr.
Stephan Kleuker

50OOAD

so nicht (4/4): so doch, Geschäftsprozessanalyse

[
]

[
]

[]

Prof. Dr.
Stephan Kleuker

51OOAD

Einschub: Swimlanes (1/2)

• Idee: jede verantwortliche Rolle für mindestens eine Aktion
bekommt eine Swimlane

• Aktionen werden jeweils in die Swimlane der verantwortlichen
Rolle eingeordnet

• Swimlanes können horizontal oder vertikal angeordnet werden

• Vorteil: schnelle Übersicht über Verantwortlichkeiten

• Nachteil: recht viel Platz für wenige Aktionen benötigt

Prof. Dr.
Stephan Kleuker

52OOAD

Einschub: Swimlanes (2/2)

Projektleitung Sachbearbeitung

Projektdaten eintragen

sachliche Korrektheit und
Vollständigkeit der Daten

prüfen

Projektdatenblatt
überarbeiten

Projektdatenblatt nach
SAP übertragen

[Daten nicht ok]

[Daten ok]

Prof. Dr.
Stephan Kleuker

53OOAD

Aufgabe der Anforderungsanalyse

Bestimmung aller Anforderungen an die zu erstellende Software
bzw. an das zu erstellende DV-System, Anforderungen müssen

– vollständig,

– notwendig ("WAS statt WIE"),

– eindeutig und

– richtig ("abgestimmt als Teil einer Zielhierarchie") sein.

Bemerkung zur Ablauforganisation: Anforderungen müssen nicht
notwendig in einer Phase vor Beginn des Entwurfs vollständig
bestimmt werden

4.1

Prof. Dr.
Stephan Kleuker

54OOAD

Probleme mit Anforderungen an große Systeme

• Auftraggebende, nutzende, betreibende Personen etc. sind häufig
verschiedene Personen, unterschiedliche Personen haben
teilweise widersprüchliche Anforderungen

• die Effekte des angestrebten Systems sind schwer vorhersehbar

• Anforderungen ändern sich im Laufe der Entwicklungszeit

• großer Umfang der Anforderungen

• komplexe Interaktion mit anderen Systemen

• Erste Aufgabe: Ermittlung der Stakeholder

• Definition: Eine Person, die Einfluss auf die Anforderungen hat, da
sie vom System betroffen ist (systembetroffene Person)

• Zweite Aufgabe: Ermittlung der Ziele des Systems

Prof. Dr.
Stephan Kleuker

55OOAD

Checkliste zum Finden von Stakeholdern (1/3) [RS]

• nutzende Personen des Systems
– Die größte und wichtigste Gruppe, liefert Großteil der fachlichen Ziele
– Durchdachtes Auswahlverfahren für die Nutzungsrepräsentanten

nötig (Vertrauensbasis der gesamten Nutzungsgruppe
berücksichtigen!)

• Management des auftragnehmenden Unternehmens (wir)
– Gewährleisten die Konformität mit Unternehmenszielen und

Strategien, sowie der Unternehmensphilosophie
– Sind die Sponsoren!

• Personen mit Entscheidungsgewalt des auftraggebenden Unternehmens
– Wer ist für die Kaufentscheidung verantwortlich?
– Liefer-Vertrags-Zahlungskonditionen?

• prüfendende, auditierende Personen
– sind für Prüfung, Freigabe und Abnahme notwendig

• entwickelnde Personen
– nennen die technologiespezifischen Ziele

Video

Video

https://youtu.be/BiUSOVVLZPI

Prof. Dr.
Stephan Kleuker

56OOAD

Checkliste zum Finden von Stakeholdern (2/3)

• Wartungs- und Servicepersonal
– Wartung und Service muss unkompliziert und zügig

durchzuführen sein
– Wichtig bei hohen Stückzahlen

• Produktbeseitigung
– Wichtig, wenn ausgeliefertes Produkt nicht nur Software

umfasst, Frage der Beseitigung (z.B. Umweltschutz), kann
enormen Einfluss auf die Zielsetzung einer
Produktentwicklung haben

• Schulungs- und Trainingspersonal
– Liefern konkrete Anforderungen zur Bedienbarkeit,

Vermittelbarkeit, Hilfesystem, Dokumentation,
Erlernbarkeit,

• Marketing und Vertriebsabteilung
– Marketing und Vertrieb als interne Repräsentanten der

externen Wünsche des Auftraggebers und der
Marktentwicklung

Prof. Dr.
Stephan Kleuker

57OOAD

Checkliste zum Finden von Stakeholdern (3/3)

• Systemschutz
– stellt Anforderungen zum Schutz vor Fehlverhalten von

Stakeholdern
• Standards und Gesetze

– vorhandene und zukünftige Standards/Gesetze
berücksichtigen

• Person die Projekt oder Produkt ablehnen
– Die Klasse der kritisch eingestellten Personen - vor allem zu

Beginn des Projekts wenn möglich mit einbeziehen, sonst
drohen Konflikte

• Kulturkreis
– setzt Rahmenbedingungen, z.B. verwendete Symbolik,

Begriffe, …
• Meinungsführung und die öffentliche Meinung

– beeinflussen oder schreiben Ziele vor, Zielmärkte
berücksichtigen

Prof. Dr.
Stephan Kleuker

58OOAD

Regeln für die Definition von Zielen

Hinweis: Ziele sind abstrakte Top-Level-Anforderungen

Ziele müssen
– vollständig,
– korrekt,
– konsistent gegenüber anderen Zielen und in sich
 konsistent,
– testbar,
– verstehbar für alle Stakeholder,
– umsetzbar — realisierbar,
– notwendig,
– eindeutig und positiv formuliert sein.

Zwei weitere Merkmale:
– Lösungsneutralität
– einschränkende Rahmenbedingungen

Video

Video

https://youtu.be/ubFSodbp6vo

Prof. Dr.
Stephan Kleuker

59OOAD

Schablone zur Zielbeschreibung

Ziel Was soll erreicht werden?

Stakeholder Welche Stakeholder sind in das Ziel involviert?
Ein Ziel ohne Stakeholder macht keinen Sinn.

Auswirkungen
auf Stakeholder

Welche Veränderungen werden für die
Stakeholder erwartet?

Rand-
bedingungen

Welche unveränderlichen Randbedingungen
müssen bei Zielerreichung beachtet werden?

Abhängigkeiten Ist dieses Ziel mit anderen Zielen unmittelbar
verknüpft? Dies kann einen positiven Effekt
haben, indem die Erfüllung von Anforderungen
zur Erreichung mehrerer Ziele beiträgt. Es ist
aber auch möglich, dass ein Kompromiss
gefunden werden muss, da Ziele
unterschiedliche Schwerpunkte haben.

Sonstiges Was muss organisatorisch beachtet werden?

Prof. Dr.
Stephan Kleuker

60OOAD

Projektbeschreibung

Zu entwickeln ist ein individuell auf die Unternehmenswünsche
angepasstes Werkzeug zur Projektverwaltung. Dabei sind die
Arbeitspakete (wer macht wann was) und das Projektcontrolling (wie
steht das Projekt bzgl. seiner Termine und des Budgets) zu
berücksichtigen. Projekte werden zur Zeit ausgehend von
Projektstrukturplänen geplant und verwaltet.

Projekte können in Teilprojekte zerlegt werden.

Die eigentlichen Arbeiten finden in Arbeitspaketen, auch Aufgaben
genannt, statt.

Projekte werden von zusammenzustellenden Projektteams bearbeitet,
die zugehörigen Daten der mitarbeitenden Personen sind zu
verwalten. Zur Ermittlung des Projektstands tragen mitarbeitende
Personen ihre Arbeitszeit und den erreichten Fertigstellungsgrad in das
System ein.

Prof. Dr.
Stephan Kleuker

61OOAD

Ziele für eine Projektmanagementsoftware (1/3)
Ziel 1. Die Software muss die Planung und Analyse aller laufenden

Projekte ermöglichen

Stakeholder Projektplanung, Projektleitung, mitarbeitende Personen,
Controlling (alle als Nutzende des Systems)

Auswirkungen
auf Stakeholder

Projektplanung: Alle Planungsdaten fließen in das neue
Werkzeug, es gibt sofort eine Übersicht, wer an was, von wann
bis wann arbeitet.
Projektleitung: Die Projektleitung ist immer über den Stand
informiert, er weiß, wer an was arbeitet.
mitarbeitende Person: Teammitglieder sind verpflichtet, ihre
Arbeitsstunden und erreichten Ergebnisse in das Werkzeug
einzutragen. Sie sehen, für welche Folgearbeiten sie wann
verplant sind.
Controlling: Hat Überblick über Projektstand.

Rand-
bedingungen

Existierende Datenbestände sollen übernommen werden. Die
Randbedingungen zur Verarbeitung personalbezogener Daten
sind zu beachten.

Abhängigkeiten -

Sonstiges Es liegt eine Studie des auftraggebenden Unternehmens vor,
warum kein Produkt vom Markt zur Realisierung genommen wird.

Prof. Dr.
Stephan Kleuker

62OOAD

Ziele für eine Projektmanagementsoftware (2/3)

Ziel 2. Das auftraggebende Unternehmen soll von der fachlichen
Kompetenz unseres Unternehmens überzeugt werden.

Stakeholder Management, Entwicklung

Auswirkungen
auf Stakeholder

Management: Der Projekterfolg hat große Auswirkungen auf
die nächsten beiden Jahresbilanzen.
Entwicklung: Es werden hohe Anforderungen an die
Software-Qualität gestellt.

Rand-
bedingungen

Es muss noch geprüft werden, ob langfristig eine für beide
Seiten lukrative Zusammenarbeit überhaupt möglich ist.

Abhängigkeiten Überschneidung mit dem Ziel 3, da eine Konzentration auf
die Wünsche des auftraggebenden Unternehmens eventuell
einer Verwendbarkeit für den allgemeinen Markt
widersprechen kann.

Sonstiges Das Verhalten des neuen auftraggebenden Unternehmens
bei Änderungswünschen ist unbekannt.

Prof. Dr.
Stephan Kleuker

63OOAD

Ziele für eine Projektmanagementsoftware (3/3)

Ziel 3. Das neue Produkt soll für einen größeren Markt einsetzbar
sein.

Stakeholder Management, Vertrieb, Entwicklung, Rechtsabteilung

Auswirkungen
auf Stakeholder

Management: Es soll eine Marktposition auf dem
Marktsegment Projektmanagement-Software aufgebaut
werden.
Vertrieb: In Gesprächen mit potenziell auftraggebenden
Unternehmen wird das neue Produkt und seine
Integrationsmöglichkeit mit anderen Produkten ab Projektstart
beworben.
Entwicklung: Die Software muss modular aufgebaut aus
Software-Komponenten mit klaren Schnittstellen bestehen.
Rechtsabteilung: Klärung der Lizensierung

Randbedingungen -

Abhängigkeiten zu Ziel 2 (Beschreibung dort)

Sonstiges Eine Analyse der Konkurrenz auf dem Markt liegt vor. Es sind
Möglichkeiten für neue, den Markt interessierende
Funktionalitäten aufgezeigt worden.

Prof. Dr.
Stephan Kleuker

64OOAD

Rahmenbedingungen und weiteres Vorgehen

Traceability:

• alle Anforderungen müssen sich auf ein Ziel zurückführen
lassen

• alle Ziele benötigen einen Stakeholder (Ökonomie-Check)

Kommunikation:

• die ausgewählten Stakeholder müssen nun detaillierter befragt
und dauerhaft in das Projekt integriert werden

Warum der ganze Aufwand:

• Vergessene Ziele und Stakeholder führen zu massiven Change
Requests

Das eigentliche SW-Projekt kann beginnen.

Prof. Dr.
Stephan Kleuker

65OOAD

Überblick über den Analyseprozess

1. Erfassung der Systemaufgaben mit „Use Cases“

2. Beschreibung der Aufgaben mit
 Aktivitätsdiagrammen

(optional 3. Formalisierung der Beschreibungen in
Anforderungen)

4. Aufbau eines tieferen Verständnisses durch
Klassenmodellierung und Sequenzdiagramme
(Grobdesign)

iterativer Prozess

4.2

Video

Video

https://youtu.be/O3RuNZN6Kyo

Prof. Dr.
Stephan Kleuker

66OOAD

Erfragung des WAS?

• Zentrale Frage:

 Was sind die Hauptaufgaben des Systems?

• Wer ist an den Aufgaben beteiligt?

• Welche Schritte gehören zur Aufgabenerfüllung?

 => Aufgaben werden als Use Cases (Anwendungsfälle)
beschrieben

 => Beteiligte werden als Aktoren festgehalten
 (können meist aus der Menge der Stakeholder bzw.

deren Rollen entnommen werden)

Prof. Dr.
Stephan Kleuker

67OOAD

Use Case (Anwendungsfall)

• Use Case beschreibt in der Sprache der Stakeholder, d.h. in
natürlicher Sprache, eine konsistente und zielgerichtete
Interaktion der nutzenden Person mit einem System, an deren
Anfang ein fachlicher Auslöser steht und an deren Ende ein
definiertes Ergebnis von fachlichem Wert entstanden ist

• Ein Use Case beschreibt das gewünschte externe
Systemverhalten aus Sicht einer nutzenden Person und somit
Anforderungen, die das System erfüllen soll

• eine Beschreibung was es leisten muss, aber nicht wie es dies
leisten soll

• Unterscheidung in Geschäftsanwendungsfall (business use
case) formuliert aus Geschäftssicht (z. B. Vertriebsprozess vom
Anfang) und Systemanwendungsfall (system use case)
formuliert aus Sicht der durch die neue SW zu lösenden
Aufgabe

Prof. Dr.
Stephan Kleuker

68OOAD

Business Use Case [OW]

2.1.8 Geschäftsanwendungsfall
• Verwandte Begriffe: engl. business use Case, Geschäftsfall.
Definition
• Ein Geschäftsanwendungsfall beschreibt einen geschäftlichen

Ablauf, wird von einem geschäftlichen Ereignis ausgelöst und
endet mit einem Ergebnis, das für den Unternehmenszweck
und die Gewinnerzielungsabsicht direkt oder indirekt einen
geschäftlichen Wert darstellt.

Beschreibung
• Bei einem Geschäftsanwendungsfall wird die Frage nach der

möglichen systemtechnischen Umsetzung noch nicht gestellt,
sondern völlig unabhängig davon ganz allgemein aus
geschäftlicher Sicht beschrieben.

• Beispiel: Business Use Case „Angebotserstellung“

Prof. Dr.
Stephan Kleuker

69OOAD

System Use Case [OW]

2.1.9 Systemanwendungsfall
• Verwandte Begriffe: engl. System use case
Definition
• Ein Systemanwendungsfall ist ein Anwendungsfall, der speziell

das für außen stehende Akteure (nutzende Person oder
Nachbarsysteme) wahrnehmbare Verhalten eines (Hard-
/Software-) Systems beschreibt.

Beschreibung
• Aus UML- und Softwareentwicklungssicht ist der

Systemanwendungsfall die normale Form eines
Anwendungsfalles. In Abgrenzung zu den verschiedenen Arten
von Geschäftsanwendungsfällen beschreibt ein
Systemanwendungsfall konkret das Verhalten bzw. den
Arbeitsablauf, wie er durch ein System (z. B. Software)
unterstützt wird. Dabei wird das äußerlich wahrnehmbare
Verhalten beschrieben, also was das System macht, aber nicht
wie es dies tut.

Prof. Dr.
Stephan Kleuker

70OOAD

Zusammenhang der Use Case Arten

• Für ein neu geplantes SW-System wird zunächst analysiert,
welche Prozesse mit der SW unterstützt werden sollen
(Geschäftsprozessmodellierung)

• Oft geht mit Modellierung auch eine Optimierung einher
• Man erhält zentrale Aufgaben, die das SW-System übernehmen

soll (Business Use Case)
• Ausgehend davon werden die Aufgaben geplant, die das SW-

System unterstützen/ausführen soll, dies sind die System Use
Cases

• Häufig gehört zu einem Business Use Case ein System Use Case,
d. h. es gibt die gleiche Überschrift, aber eine unterschiedliche
Beschreibung (im System Use Case steht die Nutzung des neues
SW-Systems im Mittelpunkt)

• Es kann weitere System Use Cases geben, die z. B. die
Systemwartung oder neue Analysemöglichkeiten betreffen

Prof. Dr.
Stephan Kleuker

71OOAD

Wege zur Use Case-Ermittlung

• moderierter Workshop zentraler Stakeholder

• Beobachtung der Personen, die das bisherige oder ein
vergleichbares System nutzen

• Fragebögen

• Interviews

• auftraggebende Person vor Ort im Projekt

• Analyse von Altsystemen und Dokumenten der
auftraggebenden Personen

• Simulationsmodelle

Prof. Dr.
Stephan Kleuker

72OOAD

Darstellungsbeispiel: Business-Netzwerk

externe Sicht der
nutzenden Person auf die
Aufgaben des Systems

Aktoren können Personen
oder andere Systeme oder
interne Auslöser sein

Use Cases können in
Teilpaketen strukturiert
werden

das zu entwickelnde
System tritt nie Aktor auf,
kann als Kasten um UC
stehen

Prof. Dr.
Stephan Kleuker

73OOAD

Systematische Use-Case Ermittlung (1/4)

1. Welche Basisinformationen / Objekte sind zu bearbeiten (keine
Detailmodellierung, keine Informationen, die aus anderen
berechenbar sind)?

 Beispiel (Projektmanagementsystem): Projekte, mitarbeitende
Personen
Prüfe ob neues System Basisinformationen verwaltet oder Sie

aus existierenden Systemen stammen
neues System: Use Case „Basisinformation XY verwalten“

gefunden (evtl. in „anlegen“, „bearbeiten“, „löschen“
trennen)

existierendes System: tritt als Aktor auf, wenn Daten benötigt

Prof. Dr.
Stephan Kleuker

74OOAD

Systematische Use-Case Ermittlung (2/4)

2. Welche Prozessinformationen sind zu verwalten, also dynamisch
entstehende Daten, Daten zur Verknüpfung von
Basisinformationen

 Beispiel: Projektteams, Arbeitsstunden der mitarbeitenden
Personen

 Ergänze Use Cases, die die Verknüpfung der Daten herstellen

Prof. Dr.
Stephan Kleuker

75OOAD

Systematische Use-Case Ermittlung (3/4)

3. Ermittle Funktionalität, die auf Basis der Verarbeitung von Basis-
und Prozessinformationen benötigt wird

 abstrakte Beispiele: Entscheidungsprozesse/ Analyseprozesse
zur Auswertung (Statistiken, Übersichten)

 Ergänze Use Case für jede der Prozessarten (Art bedeutet,
Zusammenfassung eng verwandter Funktionalität)

Prof. Dr.
Stephan Kleuker

76OOAD

Systematische Use-Case Ermittlung (4/4)

4. Ermittle Use Cases zur reinen Systempflege insofern es
besondere Herausforderungen gibt

 abstrakte Beispiele: langfristige Datenhaltung, Systemstart,
Systemterminierung

 Zeichne Use Case-Diagramm und ergänze Aktoren (z. B.
Stakeholder, genutzte Systeme, Timer) und Dokumentation

Prof. Dr.
Stephan Kleuker

77OOAD

Abgeleitetes Use Case-Diagramm

Übung

Übung

https://youtu.be/hqc5aA3UFEI

Prof. Dr.
Stephan Kleuker

78OOAD

Use Case-Erstellung genauer

• Beschreibung eines Use Cases

– zunächst verbal

– relativ abstrakt, wird später verfeinert
• Leitfragen für die Ermittlung von Aktoren und Prozessen

– Welcher Aktor löst Use Case aus?

– Welche Aktoren sind am Use Case beteiligt?

– Welche Aufgaben sind im Use Case zu erfüllen?

– Wer ist verantwortlich für Planung, Durchführung, Kontrolle der
Aufgaben?

– Welche Ereignisse starten Use Case, treten im Use Case auf?

– Welche Bedingungen sind zu beachten?

– Was sind die Ergebnisse des Use Cases?

– Welche Beziehungen gibt es zu welchen anderen Use Cases?

Prof. Dr.
Stephan Kleuker

79OOAD

Verfeinerung der Use Case-Dokumentation

• Im ersten Schritt werden in Use Cases nur Hauptaufgaben des
Systems beschrieben

• Zur Dokumentation der Use Cases gehört zunächst nur eine
grobe kurze Beschreibung (maximal 5 Sätze) des Inhalts

• Im nächsten Schritt wird dieser Inhalt konkretisiert. Dabei ist es
sinnvoll, auf eine Dokumentationsschablone zurück zu greifen
(oder eine für das Projekt zu entwickeln)

• Im ersten Schritt der Beschreibungsentwicklung wird nur der
typische Ablauf des Use Cases ohne Alternativen, dann mit
Alternativen beschrieben

4.3

Video

Video

https://youtu.be/wqYxTyKDWnM

Prof. Dr.
Stephan Kleuker

80OOAD

Dokumentationsschablone für Use Cases (1/3)

Name des Use
Case

1 kurze prägnante Beschreibung, meist aus Verb und
Nomen

Nummer 1 eindeutige Nummer zur Verwaltung, sollte von der
eingesetzten Entwicklungsumgebung vergeben
werden

Paket 2 bei sehr komplexen Systemen können Use Cases in
Teilaufgabenbereiche zusammengefasst werden,
diese Bereiche können in der UML als Pakete
dargestellt werden

Erstellung 1 wer hat den Use Case erstellt und wer mitgearbeitet

Version 1 aktuelle Versionsnummer, möglichst mit
Änderungshistorie, wer hat wann was geändert

Kurzbeschrei-
bung

1 kurze Beschreibung, was mit dem Use Case auf
welchem Weg erreicht werden soll,

beteiligte
Aktoren
(Stakeholder)

1 welche Aktoren sind beteiligt, wer stößt den Use
Case an

Prof. Dr.
Stephan Kleuker

81OOAD

Dokumentationsschablone für Use Cases (2/3)

Fachverant-
wortlich

1 wer steht auf fachlicher Seite für Fragen zum Use Case zur
Verfügung und entscheidet auf Auftraggebenderseite für
die Software über den Inhalt

Referenzen 2 Nennung aller Informationen, die bei der späteren
Ausimplementierung zu beachten beziehungsweise
hilfreich sind, können Verweise auf Gesetze, Normen oder
Dokumentationen existierender Systeme sein

Vorbedingungen 2 was muss erfüllt sein, damit der Use Case starten kann

Nachbedin-
gungen

2 wie sieht das mögliche Ergebnis aus, im nächsten Schritt
sind auch die Ergebnisse alternativer Abläufe zu
berücksichtigen

typischer Ablauf 2 welche einzelnen Schritte werden im Use Case
durchlaufen, dabei wird nur der gewünschte typische
Ablauf dokumentiert

alternative
Abläufe

3 welche Alternativen existieren zum typischen Ablauf

Prof. Dr.
Stephan Kleuker

82OOAD

Dokumentationsschablone für Use Cases (3/3)

Kritikalität 3 wie wichtig ist diese Funktionalität für das
Gesamtsystem

Verknüpfungen 3 welche Zusammenhänge bestehen zu anderen Use
Cases

funktionale
Anforderungen

4 welche konkreten funktionalen Anforderungen
werden aus diesem Use Case abgeleitet

nicht-
funktionale
Anforderungen

4 welche konkreten nicht-funktionalen Anforderungen
werden aus diesem Use Case abgeleitet

• Nummer gibt Iteration an, in der das Feld gefüllt wird
• typischer und alternative Abläufe werden jetzt genauer

betrachtet
• funktionale und nicht-funktionale Anforderungen weiter

hinten in diesem Abschnitt

Prof. Dr.
Stephan Kleuker

83OOAD

Beispielbeschreibung (1/2)

Name des Use Case Projektstruktur bearbeiten

Nummer U1

Paket -

Erstellung Achmed Analytiker

Version 1.0, 30.01.2019, Erstellung

Kurzbeschrei-bung Im Projektbüro tätige Personen haben die Möglichkeit,
Projekte mit Teilprojekten anzulegen und zu
bearbeiten.

beteiligte Aktoren
(Stakeholder)

Projektbüro (startet Use Case durch Auswahl der
Funktionalität im zu erstellenden System)

Fachverantwortlich Lisa Leitung (zentrale Ansprechpartnerin des
auftraggebenden Unternehmens)

Referenzen Handbuch zur Führung von Projekten des
auftraggebenden Unternehmens

Prof. Dr.
Stephan Kleuker

84OOAD

Beispielbeschreibung (2/2)

Vorbedingungen Die Software ist vollständig installiert und wurde gestartet.

Nachbedingun-
gen

Neue Projekte und Teilprojekte sowie Änderungen von
Projekten und Teilprojekten wurden vom System
übernommen.

typischer Ablauf 1. Nutzende Person wählt Funktionalität zur Bearbeitung
von Projektstrukturen
2. Nutzende Person legt Projekt mit Projektstandarddaten an
3. Nutzende Person ergänzt neue Teilprojekte
4. Nutzende Person verlässt Funktionalität

alternative
Abläufe

Die nutzenden Person kann existierendes Projekt auswählen,
Die nutzenden Person kann Daten eines Teilprojekts ändern

Kritikalität sehr hoch, System macht ohne Funktionalität keinen Sinn

Prof. Dr.
Stephan Kleuker

85OOAD

Hinweise zu Use Cases (1/2)

• Verwende für den Use Case eine sinnvolle Bezeichnung, die
mindestens aus einem echten Substantiv und einem aktiven
Verb ("Antrag erfassen") oder dem zugehörigen Gerundium
("Antragserfassung") besteht!

• Definiere zuerst den fachlichen Auslöser und das fachliche
Ergebnis, um Anfang und Ende des Use Cases festzulegen!

• Formuliere den Use Case so abstrakt wie möglich und so konkret
wie nötig!

• Betreibe zunächst keine Zerlegung in abgeleitete, sekundäre Use
Cases!

• Standardisiere die Sprache in den Use Cases!

Prof. Dr.
Stephan Kleuker

86OOAD

Hinweise zu Use Cases (2/2)

• Use Cases eignen sich nicht zur funktionalen Zerlegung, d.h. ein
Use Case beschreibt keine einzelnen Schritte, Operationen
oder Transaktionen (bspw. "Vertrag drucken", „Auftrags-Nr.
erzeugen" etc.), sondern relativ große Abläufe (bspw. "Neuen
Auftrag aufnehmen")

• Es wird keine Ablaufreihenfolge definiert, hierzu gibt es andere
Ausdrucksmittel, z.B. Aktivitätsdiagramme

• Use Cases belassen das Sprachmonopol beim Stakeholder,
wodurch die Use Cases angreifbarer und besser kritisierbar
werden

• Bereits hier sinnvoll: Glossar anlegen (Begriffe und Prozesses
definieren)

Prof. Dr.
Stephan Kleuker

87OOAD

Analyse von Use-Case-Dokumentationen

• es kann passieren, dass identische Abläufe mehrfach
beschrieben werden

• diese (nicht trivialen) Abläufe können als eigene Use Cases
ausgegliedert werden; man sagt dann „ein Use Case nutzt
einen anderen Use Case“

• UML-Darstellung:

• In spitzen <<Klammern>> stehen sogenannte Stereotypen, mit
denen man UML-Elementen zusätzliche Eigenschaften
zuordnen kann

A B
<<include>>

Prof. Dr.
Stephan Kleuker

88OOAD

Beispiel zu <<include>>

Prof. Dr.
Stephan Kleuker

89OOAD

<<extend>>

• Seltene Variation des erweiterten Use Cases

• Wird nur unter bestimmter Bedingung ausgeführt, z. B.
Sonderfall oder Fehlerbehandlung

• eigentlicher Use Case nicht durch Spezialfälle überfrachtet

Prof. Dr.
Stephan Kleuker

90OOAD

Hinweis zu <<include>>, <<extend>> (persönlich)

• <<include>> ist ein sehr nützlicher Stereotyp, der die
Dokumentation verkürzen kann

• Gerade bei in der Modellierung unerfahrenen auftraggebenden
Unternehmen sollte <<include>> zunächst verheimlicht
werden, da sonst funktionale Zerlegungen in Bäumen das
Ergebnis sind

• <<include>> wird dann bei der Dokumentation und späteren
Verfeinerung bei der Umstrukturierung der Use Cases als
Optimierung eingesetzt

• Hinweis: <<extend>> und weitere nicht erwähnte
Möglichkeiten werden hier ignoriert, da es auftraggebende
Unternehmen, genauer Personen ohne IT-Background, eher
verwirrt

Prof. Dr.
Stephan Kleuker

91OOAD

weiteres Use Case – Diagramm: Online-Autobörse

Prof. Dr.
Stephan Kleuker

92OOAD

Beschreibung verschiedener Abläufe

• Bei Projekten mit enger Bindung (z.B. bei engen Beziehungen
zwischen AG und IT-Abteilung bei Inhouse-Projekten) können
Use Cases (oder User Stories) als Anforderungsdokumentation
ausreichen, wenn das Projekt in kleinen Iterationen und der
Möglichkeit eines großen Einflusses der auftraggebenden
Partei entwickelt wird

• Oftmals ist die Beschreibung der Use Cases aber zu ungenau,
gerade bei der Darstellung typischer und Alternativer Abläufe
stellt sich die rein sprachliche Beschreibung als recht aufwändig
heraus

• Da die UML eine graphische Sprache ist, stellt sie auch für
Ablaufbeschreibungen eine grafische Darstellungsmöglichkeit,
nämlich Aktivitätsdiagramme, zur Verfügung

Video

Video

https://youtu.be/86aZX8jfylY

Prof. Dr.
Stephan Kleuker

93OOAD

Modellierungsrichtlinie für Aktivitätsdiagramme

Modelliere zu jedem Use Case genau ein Aktivitätsdiagramm
• Mache aus den Use Case-Schritten Aktionen
• Zerlege die Aktionen ggfls. mit einem Aktivitätsdiagramm, so

dass sie stets genau einen fachlichen Arbeitsschritt
repräsentieren

• Ergänze den Ablauf um alle bekannten fachlichen Ausnahmen,
fachlichen Fehler und fachlichen Ablaufvarianten, so dass das
Diagramm eine vollständige Beschreibung aller zulässigen
Ablaufmöglichkeiten darstellt

(sinnvoll jetzt oder später) Modelliere den Objektfluss:
• Beschreibe zu jeder Aktion die vorausgesetzten (zu

verarbeitenden) und resultierenden (erzeugten oder
veränderten) Geschäftsobjekte (Produkte).

• Unterscheide, bei welchen ausgehenden Transitionen bzw.
Bedingungen welche Objekte bzw. Objektzustände resultieren

Prof. Dr.
Stephan Kleuker

94OOAD

Aktivitätsdiagramm mit typischen Ablauf

Anmerkung: typischer Ablauf ist immer einfache Sequenz von
Aktionen, Ausnahme wie hier: einfache Schleifen

Use Case: Projektstruktur bearbeiten

Prof. Dr.
Stephan Kleuker

95OOAD

Aktivitätsdiagramm um Alternativen ergänzt

Prof. Dr.
Stephan Kleuker

96OOAD

Erinnerung: Modellierung aus Business-Sicht

Prof. Dr.
Stephan Kleuker

97OOAD

Modellierung aus System-Sicht

Prof. Dr.
Stephan Kleuker

98OOAD

n+1 Aktivitätsdiagramme (1/2)

• typisch: zu jedem Use Case ein Aktivitätsdiagramm (ggfls. mit
Verfeinerung)

• Ansatz ausreichend, wenn keine zentrale Steuerung (z. B.
WebServices)

• Für zentrale Steuerung wird ein zusätzliches
Aktivitätsdiagramm benötigt, dass diesen Ablauf zeigt (z. B. GUI
mit Nutzungsauswahl)

Prof. Dr.
Stephan Kleuker

99OOAD

n+1 Aktivitätsdiagramme (2/2)

Prof. Dr.
Stephan Kleuker

100OOAD

Formulierung von Anforderungen

• Analog zu Use Cases sind Aktivitätsdiagramme zu

dokumentieren: was unter Nutzung welcher Hilfsmittel unter

Berücksichtigung welcher Nebenbedingungen gilt

• Beschreibungen können oft unvollständig oder unklar

formuliert sein, sind zu prüfen

• Statt Fließtextdokumentation von Aktivitätsdiagrammen, kann

eine Darstellung von systematisch abgeleiteten textuellen

Anforderungen sinnvoll sein

• Man benötigt Ansatz, Texte möglichst präzise zu formulieren

4.4

Video

Video

https://youtu.be/T1ONvFYVKn0

Prof. Dr.
Stephan Kleuker

101OOAD

Sprache als Darstellungsmittel

Formulierte Anforderungen

• sind in natürlicher Sprache verfasst

• gewissen Prozessen bei der Entstehung unterworfen

Entstehungsprozesse

• verändern/verfälschen die beabsichtigte Bedeutung einer
Anforderung

• hat jeder Mensch, sind
regelgeleitet

Prof. Dr.
Stephan Kleuker

102OOAD

Glossar

• Zentrales Hilfsmittel der Anforderungsanalyse
• Aufbau: Fachbegriff – Erklärung
• Wichtig: Fachbegriff kann auch Halbsatz sein
• Kann detaillierte Erklärungen oder Referenzen auf Fachliteratur

enthalten
• muss von auftraggebenden und entwickelnden Personen

verstanden werden

Arbeitspaket Synonym für Projektaufgabe

Projektaufgabe Nicht weiter zerlegte Aufgabe mit
zugewiesenen Rollen zur Bearbeitung;
gleiche Ausgangsdaten wie Projekt

Projektausgangs-
daten

automatisch vergebene eindeutige
Projektnummer, Projektname, geplanter
Start- und Endtermin, geplanter Aufwand

Prof. Dr.
Stephan Kleuker

103OOAD

Probleme mit natürlich-sprachlichen Formulierungen

• Hauptprozesse der menschlichen Modellbildung

– Tilgung

– Generalisierung

– Verzerrung (z. B. durch Nominalisierung)

• Problem: Anforderungen werden für Menschen mit anderer
Modellbildung (da andere Erfahrungen) unsauber formuliert

• In Prosatexten sind Wiederholungen unerwünscht; bei
Anforderungen müssen immer die gleichen Worte für den
gleichen Sachverhalt genutzt werden

Prof. Dr.
Stephan Kleuker

104OOAD

Definition: Tilgung

• Tilgung ist ein Prozess, durch den wir unsere Aufmerksamkeit
selektiv bestimmten Dimensionen unserer Erfahrungen
zuwenden und andere ausschließen. (Bandler/Grinder)

• Beispiel: Die Fähigkeit des Menschen, In einem Raum voller
sprechender Menschen alle anderen Geräusche auszuschließen
oder auszufiltern, um der Stimme einer bestimmten Person
zuzuhören.

• problematisch für Anforderungen: implizite Annahmen,
unvollständige Vergleiche

Prof. Dr.
Stephan Kleuker

105OOAD

Beispiele für Tilgungen (1/2)

• Grundstruktur: Manche Prozessworte (Verben und Prädikate)
implizieren zwei oder mehr Substantivargumente

• Sprachliche Vertreter

– Eingeben: Wer? Was? Wie? Wo? Wann?

– Anzeigen: Was? Wo? In welcher Weise? Wann?

– Übertragen: Wer? Was? Von wo? Wohin? Wann?

– „Die Auszahlungsmöglichkeit soll überprüft und die
Auszahlung verbucht werden“

– Überprüfen: Wer überprüft? Was wird überprüft? Nach
welchen Regeln wird überprüft? Wann wird überprüft?
Wie?

– Verbuchen: Wer verbucht? Was wird verbucht? Wann wird
es verbucht? Wie?

Prof. Dr.
Stephan Kleuker

106OOAD

Beispiele für Tilgungen (2/2)

• Grundstruktur: Der Bezugspunkt. die Messbarkeit und die
Messgenauigkeit für einen Komparativ oder Superlativ fehlt.

• Sprachliche Vertreter: Adjektiv + Endung "-er/en", "-ste" oder
"more", "less", "least", oder "weniger", "mehr"

• In beiden Sprachen: Adjektive wie leicht, easy, schwer,
complicated, ...

• Für durchschnittlich große Menschen soll das Display im
normalen Bedienabstand gut lesbar sein.

• Die Eingabe des angeforderten Geldbetrages soll vom System
durch eine intuitive Nutzungsführung so unterstützt werden,
dass Fehleingaben minimiert werden.

– Kann man den Sachverhalt überhaupt messen?

– Ist der Bezugspunkt des Vergleiches angegeben?

– Mit welcher Messgenauigkeit wird gemessen?

Prof. Dr.
Stephan Kleuker

107OOAD

Definition: Generalisierung

• Generalisierung ist der Prozess, durch den Elemente oder Teile
eines persönlichen Modells von der ursprünglichen Erfahrung
abgelöst werden, um dann die gesamte Kategorie, von der
diese Erfahrung ein Beispiel darstellt, zu verkörpern.
(Bendler/Grindler)

• Beispiel: Ein Kind verbrennt sich an einer heißen Herdplatte die
Hand. Es sollte für sich die richtige Generalisierung aufstellen,
dass es schmerzhaft ist auf heiße Herdplatten zu fassen.

• problematisch für Anforderungen: Universalquantoren,
unvollständige Bedingungen

Prof. Dr.
Stephan Kleuker

108OOAD

Generalisierung durch Universalquantoren

Universalquantoren

• Grundstruktur: Menge an Objekten wird zusammengefasst

• Sprachliche Vertreter:

– Im Deutschen: nie, immer, kein, jeder, alle, ...

– Im Englischen: never, ever, not, each, always, ...

• Frage:

– Wirklich alle/jede, immer/nie? Gibt es keine Ausnahme?

– Achtung! Auch Sätze ohne Universalquantoren überprüfen,
die keine Angaben über die Häufigkeit enthalten!

Prof. Dr.
Stephan Kleuker

109OOAD

Beispiele für Generalisierungen

• Jede Auszahlung soll für die Rückverfolgbarkeit zusätzlich mit
einem Zeitstempel etikettiert werden.

– Wirklich jede Auszahlung?

• Das System soll eine Sicherung von aufgezeichneten
Auszahlungsdaten auf ein externes Speichermedium
ermöglichen.

– Durch jede Person? Immer? Aller Auszahlungsdaten?

Prof. Dr.
Stephan Kleuker

110OOAD

Definition: Verzerrung

• Verzerrung ist der Prozess, etwas mittels Überlegungen,
Fantasie oder Wünschen, so umzugestalten, dass ein neuer
Inhalt oder eine neue Bedeutung entsteht. (Dörrenbacher)

• Beispiel: Behauptung, dass auf A dann B folgt oder
Gedankenlesen

– Da jemand zu spät ist, ist das Projekt gefährdet

– Ich denke, der mag mich nicht

– Er sollte wissen, wie ich mich jetzt fühle

Prof. Dr.
Stephan Kleuker

111OOAD

Verzerrung: Beispiele und Analyse

• Die nutzende Person muss zunächst sein Login und dann sein
Passwort eingeben.

• Der nutzenden Person muss am Anfang immer die
Übersichtsseite gezeigt werden.

• Die nutzende Person muss eingeloggt sein, um die Übersicht zu
sehen.

• „Das muss genau wie Word aufgebaut sein“

• Was führt zur Annahme, dass diese Reihenfolgen notwendig
sind?

• Was würde sich bei einer anderen Reihenfolge oder Verlassen
einer Einschränkung ändern?

• Welche Eigenschaften von Word sind wichtig; warum muss es so
sein

Prof. Dr.
Stephan Kleuker

112OOAD

Verzerrung durch Nominalisierung

• Grundstruktur: Ein Prozesswort (Verb oder Prädikat) wird zu einem
Ereigniswort (Substantiv oder Argument) umgeformt.

• Dadurch wird ein Vorgang zu einem Ereignis und viele
vorgangsrelevante Informationen gehen verloren.

• Es ist möglich, dass sich die Bedeutung der Aussage dadurch ändert

– Die Berechtigung für die Administration des Geldautomaten

– Die Auszahlung wird nach der Buchung durchgeführt

– Wer? zahlt wann? Wem? Was? Unter Einhaltung welcher
Regeln? Mit welcher Zuverlässigkeit? Mit welcher
Verfügbarkeit?

– Wer? bucht wann? Was? Wohin? Unter Einhaltung welcher
Regeln? Mit welcher Zuverlässigkeit? Mit welcher
Verfügbarkeit?

Prof. Dr.
Stephan Kleuker

113OOAD

Erkennen von Nominalisierungen

Fragen/Vorgehen:

• Intuition, Sprachgefühl

• Suche nach ähnlichem Prozesswort

• Sprachtest durch Einsetzen in "ein(e) andauernde(r) …". Wahre
Substantive passen nicht in diese Aussage

Beispiele:

• Bei der Auswahl der Auszahlungsfunktion soll die …

• der Anzeige, Nutzungsführung, Bestätigung,

• die Eingabe, Erfassung,

• das Ereignis, die Meldung, ...

• die Buchung, Ausgabe, Prüfung,

Anmerkung: Nominalisierung wird oft auch als Tilgung angesehen
http://nlpportal.org/nlpedia/wiki/Metamodell

http://nlpportal.org/nlpedia/wiki/Metamodell

Prof. Dr.
Stephan Kleuker

114OOAD

Entwicklung strukturierter Anforderungen

• ein Ansatz zu qualitativ hochwertigen Anforderungen: erste

Version erstellen und dann Textqualität schrittweise

verbessern

• Alternative: „von Anfang an“ hochwertige Anforderungen zu

schreiben

• Dieser Ansatz kann durch Anforderungsschablonen unterstützt

werden, die den Satzbau von Anforderungen vorgeben

(vorgestellter Ansatz folgt [RS])

• Man beachte, bereits erwähnte Ausdrucksprobleme auch in

diesem Ansatz noch relevant

Prof. Dr.
Stephan Kleuker

115OOAD

Charakterisierung von Systemaktivitäten

• Selbständige Systemaktivität:

 Das System führt den Prozess selbständig durch.

• Nutzungsinteraktion:

 Das System stellt der nutzenden Person die
Prozessfunktionalität zur Verfügung.

• Schnittstellenanforderung:

 Das System führt einen Prozess in Abhängigkeit von einem
Dritten (zum Beispiel einem Fremdsystem) aus, ist an sich
passiv und wartet auf ein externes Ereignis

• Für jede dieser Systemaktivitäten gibt es eine Schablone

• Frage: Werden Systemaktivitäten so in disjunkte Klassen
aufgeteilt?

Prof. Dr.
Stephan Kleuker

116OOAD

Visualisierung der Systemaktivitäten

Prof. Dr.
Stephan Kleuker

117OOAD

Anforderungsformulierung (Rupp-Schablone)

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Typ 1: Selbständige Systemaktivität, System führt Prozess selbständig durch, z. B.
Berechnung des bisherigen Aufwandes eines Projekts durch Abfrage aller
Teilprojekte und Ergebnisanzeige
Typ 2: Nutzungsinteraktion, System stellt der nutzenden Person die
Prozessfunktionalität zur Verfügung, z: B. Verfügbarkeit eines Eingabefeldes, um
den Projektdaten einzugeben
Typ 3: Schnittstellenanforderung, d. h. das System führt einen Prozess in
Abhängigkeit von einem Dritten (zum Beispiel einem Fremdsystem) aus, ist an
sich passiv und wartet auf ein externes Ereignis, z. B. Anfrage einer anderen
Bürosoftware nach einer Übersicht über die laufenden Projekte annehmen

Prof. Dr.
Stephan Kleuker

118OOAD

Typ 1: Selbständige Systemaktivität

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Nach Abschluss der Eingabe (mit „Return“-Taste oder
Bestätigungsknopf) bei der Bearbeitung von Daten muss das
System neu eingegebene Daten in seine permanente
Datenhaltung übernehmen. [„Daten“ im Glossar konkretisieren]
Nach der Eingabe eines neuen Teilprojekts oder einer neuen
Projektaufgabe und nach der Aktualisierung des Aufwandes
eines Teilprojekts oder einer neuen Projektaufgabe muss das
System die Aufwandsangaben auf Plausibilität prüfen.

Prof. Dr.
Stephan Kleuker

119OOAD

Typ 2: Nutzungsinteraktion

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

In der Projektbearbeitung muss das System der nutzenden
Person die Möglichkeit bieten, ein neues Projekt mit
Projektausgangsdaten anzulegen.
In der Projektbearbeitung muss das System der nutzenden
Person die Möglichkeit bieten, jedes Projekt auszuwählen.
Nach der Projektauswahl muss das System der nutzenden
Person die Möglichkeit bieten, für existierende Projekte neue
Teilprojekte anzulegen.

Prof. Dr.
Stephan Kleuker

120OOAD

Typ 3: Schnittstellenanforderung

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Nach der Kontaktaufnahme durch die Software „Globalview“ muss
das System fähig sein, Anfragen nach den Projektnamen, deren
Gesamtaufwänden und Fertigstellungsgraden anzunehmen.

Beispiel: WebService-Schnittstellen werden so beschrieben

(folgt Typ2: Nach der Annahme der Anfrage …)

Prof. Dr.
Stephan Kleuker

121OOAD

Vom Aktivitätsdiagramm zur textuellen Anforderung

• Jede Aktion wird mit einer Anforderung oder mehreren
Anforderungen beschrieben

• Jede Entscheidung wird mit einer Anforderung oder mehreren
Anforderungen beschrieben

• Aus dem Ablauf der zur Aktion oder Entscheidung führt, wird
der erste Teil der jeweiligen Anforderung („Wann?“) erzeugt

• Hinweis: Anforderungen zum Beispiel stehen im folgenden
Kapitel

Prof. Dr.
Stephan Kleuker

122OOAD

Beispielübersetzung (Fragment)

Prof. Dr.
Stephan Kleuker

123OOAD

Nicht-funktionale Anforderungen (1/2) [sehr kurz]

• Bisher lag der Schwerpunkt auf funktionalen Anforderungen
„was muss das System machen“

• technische Anforderungen:

– Hardwareanforderungen

– Architekturanforderungen

– Anforderungen an die Programmiersprachen

• Anforderungen an die Benutzungsschnittstelle:

– Form und Funktion von Ein- und Ausgabe-Geräten

– (gesamter Ergonomie-Bereich)

• Anforderungen an die Dienstqualität:

– DIN EN ISO 66272 unterteilt die Dienstgüte in die fünf
Merkmale Zuverlässigkeit, Benutzbarkeit, Effizienz,
Änderbarkeit und Übertragbarkeit

4.5

Video

Video

https://youtu.be/8--_8Y2GkGc

Prof. Dr.
Stephan Kleuker

124OOAD

Nicht-Funktionale Anforderungen (2/2)

• Anforderungen an sonstige Lieferbestandteile, z. B.
– Systemhandbücher
– Installationshandbücher

• Anforderungen an die Durchführung der Entwicklung und
Einführung, z. B.
– Anforderungen an die Vorgehensweise
– anzuwendende Standards
– Hilfsmittel (Tools)
– Durchführung von Besprechungen,
– Abnahmetests (fachliche Abnahme, betriebliche Abnahme)

• rechtlich-vertraglichen Anforderungen, z. B.
– Zahlungsmeilensteine
– Vertragsstrafen
– Umgang mit Änderungen
– Eskalationspfade

Prof. Dr.
Stephan Kleuker

125OOAD

Varianten der Anforderungsermittlung (1/3)

• Persona: Konkretisierung von Stakeholdern, insbesondere
nutzenden Personen als konkrete Individuen

• Bsp.: Lara, 27 Jahre, Wirtschaftsinformatik, 4 Jahre im
Unternehmen, Projektleiterin, liebt strukturierte
Vorgehensweisen, mag viele Visualisierungen von
Zusammenhängen, macht privat einen Origami-Blog, hält als
Haustier eine Boa

• Persona helfen in der Analyse tätigen Personen manchmal sich
in konkrete Abläufe und Handlungsweisen einzudenken

• Persona werden gerne in kreativen Bereichen, wie Usability und
Interaction Design genutzt

Prof. Dr.
Stephan Kleuker

126OOAD

Varianten der Anforderungsermittlung (2/3)

• Epic: Beschreibung typischer Arbeitsabläufe späterer
nutzenden Personen (klarer Anfang, eindeutiges Ergebnis)

-> ähnlich einsetzbar wie Use Cases, können auch
Aktivitätsdiagrammerstellung unterstützen

Prof. Dr.
Stephan Kleuker

127OOAD

Varianten der Anforderungsermittlung (3/3)

• User Story (u. a. in Extreme Programming): Fokus auf eine von
einer bestimmen Rolle gewünschten Funktionalität

• abstrakt: Als <Stakeholder in folgender Rolle> möchte ich
<geforderte Funktionalität> um <gewünschter Nutzen>.

• Als Projektleitung möchte ich den aktuellen Stand an
verbrauchten Arbeitsstunden der Arbeitspakete kompakt
überblicken, um zu bewerten, ob aktuelle Planungsziele
erreicht werden können.

-> User Stories verfeinern Epics und stellen damit Teile von
Abläufen von Aktivitätsdiagrammen dar

• User Storys sind alternativ/ergänzend zur vorgestellten
Anforderungsanalyse nutzbar

Prof. Dr.
Stephan Kleuker

128OOAD

Lastenheft / Pflichtenheft

• Lastenheft wird vom auftraggebenden Unternehmen (AG)
geschrieben
– welche Funktionalität ist gewünscht
– welche Randbedingungen (SW/ HW) gibt es

• Pflichtenheft wird vom auftragnehmenden Unternehmen (AN)
(Software-Entwicklung) geschrieben
– welche Funktionalität wird realisiert
– auf welcher Hardware läuft das System
– welche SW-Schnittstellen (Versionen) berücksichtigt

• Variante: AG beauftragt AN direkt in Zusammenarbeit
Pflichtenheft zu erstellen
– ein gemeinsames Heft ist sinnvoll
– Pflichtenheft ist meist (branchenabhängig) zu bezahlen

4.6

Prof. Dr.
Stephan Kleuker

129OOAD

Lastenheft / Pflichtenheft: möglicher Aufbau

0. Administrative Daten: von wem, wann genehmigt, ...
1. Zielbestimmung und Zielgruppen

In welcher Umgebung soll System eingesetzt werden?
Ziele des Systems, welche Stakeholder betroffen?

2. Funktionale Anforderungen
Produktfunktionen (Use Cases, Aktivitätsd., Anforderungen)
Produktschnittstellen (a. GUI-Konzept b. andere SW)

3. Nichtfunktionale Anforderungen
Qualitätsanforderungen
weitere technische Anforderungen

4. Lieferumfang
5. Abnahmekriterien
6. Anhänge (insbesondere Glossar)

Prof. Dr.
Stephan Kleuker

130OOAD

5. Grobdesign

5.1 Systemarchitektur

5.2 Ableitung von grundlegenden Klassen

5.3 Ableitung von Methoden und Kontrollklassen

5.4 Validierung mit Sequenzdiagrammen

5.5 Überlegungen zur Oberflächenentwicklung

Video

Video

https://youtu.be/w2k1ROtIBUM

Prof. Dr.
Stephan Kleuker

131OOAD

Systemarchitektur

Festlegen der Randbedingungen bzgl. Hardware, Betriebssystem,
verwendeter Software, zu integrierender Systeme

• Vorgabe der Hardware, die Software muss z. B. auf einer
Spezialhardware funktionieren

• Vorgabe des Betriebssystems, die Software muss eventuell mit
anderer Software auf Systemebene zusammenarbeiten

• Vorgabe der Middleware, die Software wird häufig auf
verschiedene Prozesse verteilt, die miteinander kommunizieren
müssen

• Vorgaben zu Schnittstellen und Programmiersprachen, die
Software soll mit anderer Software kommunizieren und muss
dabei deren Schnittstellen berücksichtigen

• Vorgaben zum „Persistenz-Framework“, die Daten der zu
erstellenden Software müssen typischerweise langfristig
gespeichert werden

5.1

Prof. Dr.
Stephan Kleuker

132OOAD

Klassenmodellierung für OO-Programmier*innen

• Generell soll im Grobdesign eine erste Klassenmodellierung
stattfinden, die die gesamte geforderte Funktionalität abdeckt

• Hauptaufgabe des Klassenmodells, auch Domain-Model
genannt, ist damit die Vollständigkeit

• Danach wird Domain-Model im Feindesign in Richtung
effizienter Programmierung, z. B. mit Hilfe von Design-Pattern,
optimiert

• in OO erfahrende programmierende Personen (HS OS, 4.
Semester), können bereits im Domain-Model sinnvolle
Optimierungen (d. h. Nutzung guter Design-Regeln) vornehmen

• Deshalb werden hier UML-Klassendiagramme und
Sequenzdiagramme für Personen mit Programmiererfahrung
vorgestellt

5.2a

Prof. Dr.
Stephan Kleuker

133OOAD

Modellierungsaufgabe

• Es soll eine SW zur Verwaltung von mitarbeitenden Personen
mit ihren Fähigkeiten erstellt werden.

• Die Software soll Projekte verwalten, denen mitarbeitende
Personen zugeordnet und ein Scrum Master aus den
mitarbeitenden Personen zugeordnet werden können.

• Mitarbeitende Personen können in verschiedenen Projekten
mitarbeiten, dazu wird festgelegt, von wann bis wann sie zu
welchem Prozentanteil mitarbeiten.

• (Achtung, dies ist keine sinnvolle Anforderungsanalyse)

• wichtiger Hinweis: Die UML und damit Klassendiagramme sind
programmiersprachenunabhängig, deshalb gibt es auch Teile
von Java, die nicht in UML (ohne Erweiterungen) darstellbar
sind [und andersherum]

Prof. Dr.
Stephan Kleuker

134OOAD

Erinnerung: Java-Grundregeln für Klassen

• Klassenname in Einzahl (Nomen oder Nominalisierend: Mitarbeitend)

• Objektvariablen (= Instanzvariablen) sind immer private; bei
Vererbung auch protected möglich

• gibt immer parameterlosen Konstruktor

• gibt für jede Objektvariable get- und set-Methode

• letzten beiden Regeln werden von vielen Java-Frameworks, auch Java
selbst bei XML-Nutzung, benötigt

• gibt immer toString()-Methode zur Objektvisualisierung

• gibt (fast) immer equals()- und hashCode()-Methode

• alle genannten Konstruktoren und Methoden sind generierbar

• Sie halten sich an Java-Coding-Guidelines; Einstieg dazu über
http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf

http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf

Prof. Dr.
Stephan Kleuker

135OOAD

Klasse Mitarbeitend (1/3)
public class Mitarbeitend {

 private int id;

 private String name;

private static int idCount = 1000;

in französischen Anführungsstrichen
stehen optionale Stereotypen; diese
bietet die UML als Markierungs- und
Erweiterungsmöglichkeit; sind für
Klassendiagramme nicht vorgegeben

Klassenname (evtl. Paket davor)

Objektvariaben mit
<Sichtbarkeit> <Name>: <Typ>

Klassenvariablen sind unterstrichen

Startwerte können für alle Variablen
angegeben werden

Prof. Dr.
Stephan Kleuker

136OOAD

Klasse Mitarbeitend (2/3)
public Mitarbeitend() {

 this.id = Mitarbeitend.idCount++;
 }

 public Mitarbeitend(String name) {
 this();
 this.name = name;
 }

 public int getId() {return id;}

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return this.name;
 }

public void setName(String name) {
 this.name = name;
 }

Konstruktor mit
<Sichtbarkeit> <Name>
(<Parameterliste>)

Methode mit
<Sichtbarkeit> <Name>
(<Parameterliste>),
optional Parameternamen
angebbar

Prof. Dr.
Stephan Kleuker

137OOAD

Klasse Mitarbeitend (3/3)

public static int wertIdCount() {
 return Mitarbeitend.idCount;
 }
}

Sichtbarkeiten:
+: public
-: private
#: protected
~ : (nicht genau package-protected
wie in Java)

Rückgabetyp void weglassbar

Klassenmethoden sind unterstrichen
mit <Sichtbarkeit> <Name>

(<Parameterliste>)

Prof. Dr.
Stephan Kleuker

138OOAD

Inkrementelle Entwicklung mit UML

• generell können fast alle Informationen weggelassen und
später ergänzt werden

• wird Klasse in anderen Klassendiagrammen gezeigt, wird auch
oft nur der Kasten gezeigt

Prof. Dr.
Stephan Kleuker

139OOAD

Dynamische Modellierung mit Sequenzdiagrammen

• Klassendiagramme sind statisch und zeigen „nur“ Aufbau
• Beispielabläufe mit Sequenzdiagrammen darstellbar
• Beispiel: jemand/irgendein Objekt erzeugt Mitarbeitend und

ändert den Namen

hier stehen Objekte die vor dem Start existieren

Objekt wird neu erstellt,
immer unterschrichen,
vor Doppelpunkt kann
Name stehen

Methodenaufruf (mit Beispielparametern
oder freien Variablennamen)

Ablaufkontrolle geht zurück,
kann Ergebnis enthalten

Lebenslinie, Zeit vergeht
von oben nach unten

Prof. Dr.
Stephan Kleuker

140OOAD

Algorithmen mit Sequenzdiagrammen

• Sequenzdiagramm zeigt Vertauschen von Namen

diese Objekte
existieren beim
Diagrammstart,
haben Namen
(hier unnötig)

man kann Pfeilen
immer durchgehend
folgen

“extern” nicht Teil der UML,
schließt aber Diagramme ab

Prof. Dr.
Stephan Kleuker

141OOAD

Zusammenhang: Programm und Sequenzdiagramm

public class A {
 private B b= new B();
 private C c;

 public char mach(int x){
 int t= b.tues(x);
 c= new C(t,t+1);
 return b.yeah(c);
 }
}

public class B {

public int tues(int x){
return x%255;

}

public char yeah(C c){
char e=c.sachA();
return (char) (e+1);

}

}

:A b:B

c:C

mach(42)
tues(42)

new C(42,43)

42

yeah(c)

'U'

sachA()

'V'

'V'

extern

Prof. Dr.
Stephan Kleuker

142OOAD

Mitarbeitend-Objekt hat Sammlung von Fähigkeiten

• Faehigkeit ist Enumeration

• Umsetzung in Java:
 public enum Faehigkeit {

JAVA, C, GO, MASTER, PRODUCTOWNER
 }

• in Mitarbeitend:
 private Set<Faehigkeit> faehigkeiten;

 public void hinzuFaehigkeit(Faehigkeit f) {
 this.faehigkeiten.add(f);
 }

 public boolean hatFaehigkeit(Faehigkeit f) {

return this.faehigkeiten.contains(f);
 }

Video

Video

https://youtu.be/lnPfIqENmVs

Prof. Dr.
Stephan Kleuker

143OOAD

Sammlungen in Klassendiagrammen

Aufzählungs-
werte angeben

gerichtete Assoziation, Klasse hat Objektvariable
von Typ anderer Klasse Objektvariable von Mitarbeitend

private faehigkeiten

Multiplizitäten
0 keines
1 genau eines
* beliebig viele
0..1 max. eines
3..* mindestens 3

Prof. Dr.
Stephan Kleuker

144OOAD

Assoziation genauer

• Pfeil gibt an, dass nur Mitarbeitend-Objekte ihre Fähigkeiten
kennen, nicht anders herum

• ohne Pfeilspitze unterspezifiziert, bzw. bidirektional

• * rechts: zu jedem Mitarbeitend-Objekt gehören beliebig viele
Faehigkeiten, die in der Variablen faehigkeiten stehen

• * links: jedes Faehigkeits-Objekt kann in beliebig vielen
Mitarbeitend-Objekten vorkommen (dies sieht man nicht im
Code, ist aber Teil der Modellierung; ist damit Randbedingung)

• ohne weitere Angaben ist Art der Sammlung bzw. Collection
(List, Map, Set, MultiSet) unterspezifiziert

• -faehigkeiten steht auf der rechten Seite, nicht in der Mitte!

Prof. Dr.
Stephan Kleuker

145OOAD

neues Mitarbeitend-Objekt mit Faehigkeiten

• in Sequenzdiagrammen nur „wichtige“ Klassen für Verständnis

• deshalb ist HashSet-Objekt hier nicht sichtbar

• meist werden solche Collections weggelassen

• natürlich können alle Objekte eingezeichnet werden

Prof. Dr.
Stephan Kleuker

146OOAD

neues Mitarbeiten-Objekt mit Faehigkeiten - genauer

• hier wurde Set-Objekt zur Veranschaulichung eingetragen

• (werden wir in der Veranstaltung nicht machen)

Prof. Dr.
Stephan Kleuker

147OOAD

Wer erstellt Mitarbeitend-Objekte

• zumindest bei Entitäten soll es nur eine Klasse geben, die
Objekte erzeugt

• typischerweise Controller- oder Verwaltungsklasse

• Controller ist einzige Möglichkeit für CRUD

• Mitarbeitend-Objekt zu erzeugen (CREATE)

• Mitarbeitend-Objekt (über Schlüssel) zu finden (READ)

• Mitarbeitend-Objekt zu verändern (UPDATE)

• Mitarbeitend-Objekt zu löschen (DELETE)

• alle Veränderungen und Befragungen von Mitarbeitend-
Objekten, hier zu Fähigkeiten, findet über diese Klasse statt

• (ab jetzt get- und set- sowie Java-übliche Methoden
weggelassen)

Prof. Dr.
Stephan Kleuker

148OOAD

MitarbeitendController in Java (1/2)

public class MitarbeitendController {
 private Map<Integer,Mitarbeitend> mitarbeitende;

 public MitarbeitendController() {
 this.mitarbeitende = new HashMap<>();
 }

 public int neuMitarbeitend(String name) {
 Mitarbeitend tmp = new Mitarbeitend(name);
 this.mitarbeitende.put(tmp.getId(), tmp);
 return tmp.getId();
 }

 public Mitarbeitend findeMitarbeitend(int id) {
return this.mitarbeitende.get(id);

 }

 public Mitarbeitend loescheMitarbeit(int id) {
return this.mitarbeitende.remove(id);

 }

Prof. Dr.
Stephan Kleuker

149OOAD

MitarbeitendController in Java (2/2)
public void aendereMitarbeitend(int id, String name) {

 Mitarbeitend tmp = this.findeMitarbeitend(id);
 if (tmp != null) {
 tmp.setName(name);
 }
 }

 public void hinzuFaehigkeit(int id, Faehigkeit f) {
 Mitarbeitend tmp = this.findeMitarbeitend(id);
 if (tmp != null) {
 tmp.hinzuFaehigkeit(f);
 }
 }

 public boolean hatFaehigkeit(int id, Faehigkeit f) {
 Mitarbeitend tmp = this.findeMitarbeitend(id);
 return tmp != null && tmp.hatFaehigkeit(f);
 }

Prof. Dr.
Stephan Kleuker

150OOAD

Modellierung: MitarbeitendController

“nutzt”-Beziehung
(Klasse kommt im Code
vor, gibt aber keine
Objektvariable)

jedes Mitarbeitend in
genau einem Controller

Objektvariable vom Typ Sammlung in MitarbeitendController

Prof. Dr.
Stephan Kleuker

151OOAD

• typisch: Weiterleitung (Delegation) von Controller-Aufruf an Entität

• Sequenzdiagramme können mit sehr kurzen Fragmenten Sachverhalte
zeigen; es kann auch sinnvoll sein längere detaillierte Abläufe zu
visualisieren

Mitarbeitend-Objekt mit Fähigkeiten anlegen

Prof. Dr.
Stephan Kleuker

152OOAD

Einschub: Programmzeilen des Grauens

• Nie, nie Objektvariablen mit get oder find holen und dann
bearbeiten; Bearbeitung immer durch Controller

• OP: Herz herausoperieren, an Uni-Klinik schicken, dort Herz
korrigieren, zurück schicken, Herz wieder einsetzen

Mitarbeitend m = mitarbeitendController.findeMitarbeitend(42);
Set<Faehigkeit> sf = m.getFaehigkeiten();
sf.add(Faehigkeit.GO);
m.setFaehigkeiten(sf); // schlecht und ohnehin ueberfluessig

• wenn Sie sowas sehen, Standardfrage: „Wenn Du gerne
programmierst, warum lernst Du es nicht“

Prof. Dr.
Stephan Kleuker

153OOAD

Projekte mit beliebig vielen Mitarbeitend-Objekten

• gleiche Objektvariablennamen erlaubt, muss aber nicht sein

• muss nicht alle CRUD-Methoden geben

Prof. Dr.
Stephan Kleuker

154OOAD

Design-Entscheidung über Modellierung hinaus

• Design-Entscheidung: Projekt kennt seine Mitarbeitend-Objekte;
sollen zu Mitarbeitend-Objekt alle Projekte bestimmt werden, muss
über alle Projekte iteriert werden

• wenn Projekte von Mitarbeitend-Objekten zu suchen sehr wichtig,
dann Assoziation umdrehen

• wenn beide Richtungen sehr wichtig, dann bidirektional (möglichst
vermeiden, da später fehleranfällig; nicht immer vermeidbar)

Prof. Dr.
Stephan Kleuker

155OOAD

Jedes Projekt kann einen Scrum-Master haben

• kann mehrere Assoziationen zwischen zwei Klassen geben

• Erinnerung: existierende Methoden setMaster() und
getMaster() nicht mehr angegeben

• Frage wo geprüft wird, ob Mitarbeitend-Objekt Fähigkeit
„MASTER“ hat, bleibt offen

Prof. Dr.
Stephan Kleuker

156OOAD

ProjektController

nutzt Controller, um zu einer id
Mitarbeitend-Objekt zu finden

Parameternamen sinnvoll,
um sie zu unterscheiden

Prof. Dr.
Stephan Kleuker

157OOAD

neues Projekt mit Master erzeugen

später sehen wir, dass auch in Sequenzdiagrammen geprüft
werden kann, ob m == null gilt

Prof. Dr.
Stephan Kleuker

158OOAD

Erweiterung: Mitarbeitend-Objekt anteilig zuordnen

• Jede mitarbeitende Person arbeitet von einem Datum bis einem
Datum zu einem bestimmten Prozentanteil in einem Projekt

• weder auf einer, noch auf beiden Seiten macht folgendes Sinn:

• entweder: jede mitarbeitende Person eines Projekts muss zum
gleichen Datum mit gleichen Anteil starten und beenden

• oder: jedes Projekt einer mitarbeitenden Person muss zum
gleichen Datum mit gleichen Anteil starten und beenden

Prof. Dr.
Stephan Kleuker

159OOAD

Standardlösung: Koppelentität

• Erinnerung: Übersetzung von M:N-Beziehungen von ER-
Diagrammen in Tabellen

• Achtung: Objektorientierung nutzt keine Fremdschlüssel,
sondern Referenzen

Prof. Dr.
Stephan Kleuker

160OOAD

Mitarbeitend-Objekt zum Projekt hinzufuegen

Prof. Dr.
Stephan Kleuker

161OOAD

Zwischenstand zum Zoomen

Prof. Dr.
Stephan Kleuker

162OOAD

Flexibilisierung mit Interfaces

• Konzept der bisherigen Controller ok, allerdings bis jetzt rein lokale
Datenhaltung

• Realität: Daten befinden sich in einer Datenbank

• Controller nutzt Datenbankverbindung, um Entitätsobjekte zu
verwalten (CRUD)

• DB-Verwaltung wird typischerweise von eigener SW übernommen;
z. B. objekt-relationale Mapper für relationale Datenbanken

• Java-Standardlösung: JPA (s. Software-Architektur, 5. Semester)

• schön wäre, wenn einfach zwischen verschiedenen Lösungen
umgeschaltet werden könnte

• Ansatz: nur Methoden spezifizieren (also abstract) und
verschiedene Implementierungen anbieten

Prof. Dr.
Stephan Kleuker

163OOAD

Interface in UML

Stereotyp <<interface>>
alle Methoden abstract

realisiert-Pfeil, gestrichelt
mit offenen Dreieck als
Pfeilspitze

Prof. Dr.
Stephan Kleuker

164OOAD

Teilimplementierung
Stereotyp <<abstract>>
für abstrakte Klasse

kursiv (oder <<abstract>>)
für abstrakte Methode

Vererbungspfeil

alle Methoden angeben, die hier
implementiert/überschrieben werden

Adapter implementiert zwei Methoden,
die der Controller nicht überschreibt

Prof. Dr.
Stephan Kleuker

165OOAD

Zwischenfazit

• Beispiel zeigt einen systematischen Weg zur Erstellung eines
Klassendiagramms

• Sequenzdiagramme veranschaulichen die Dynamik, wer was wann
wo aufruft

• Klassendiagramme entstehen oft an Whiteboards mit vielen Fotos für
Zwischenergebnisse , wischen, streichen, markieren, …

• Beispiel zeigt eine sinnvolle Lösung, aber weitere Themen

– es gibt Varianten bei den Rückgaben, gerade null ist diskutabel (->
Java kennt Optional (später); generell Ergebnisklasse(n) sinnvoll)

– was passiert bei Ausnahmen

– wohin mit Konstanten (z. B. Hilfsklassen, alle können zugreifen)

– …

Prof. Dr.
Stephan Kleuker

166OOAD

Beispiel für Design-Idee (1/5)

Wenn Objektsammlungen benötigt, gibt es häufig eine
Verwaltungsklasse (hier mal Verwaltung statt engl. Controller):

• kann Objekt anlegen

• kann Objekt mit gegebenem
 Identifikator suchen

• kann löschen

• …

Video

Video

https://youtu.be/c2t1ljVl1t4

Prof. Dr.
Stephan Kleuker

167OOAD

Beispiel für Design-Idee (2/5)

Objektsammlungen können auch Teil anderer Objekte sein, die
bieten wieder: anlegen, suchen, ändern, löschen
• Klausur bekommt Studierend und Note um Pruefungsergebnis

zu erzeugen und dann zu verwalten

Prof. Dr.
Stephan Kleuker

168OOAD

Beispiel für Design-Idee (3/5)

Idee fortgesetzt, man beachte zusätzlichen Parameter

• Klausurliste kann Klausur anlegen und verwalten

• Klausurliste kann Klausur mitteilen ein Pruefungsergebnis
anzulegen

Prof. Dr.
Stephan Kleuker

169OOAD

Beispiel für Design-Idee (4/5)

- Klausurlistenverwaltung kann Klausurliste anlegen
- Klausurlistenverwaltung kann Klausurliste mitteilen,
 ein Pruefungsergebnis anzulegen (über Klausur)

Prof. Dr.
Stephan Kleuker

170OOAD

Beispiel für Design-Idee (5/5)

• Ausblick: Objekterzeugung und erstes Prüfungsergebnis

Studierendenverwaltung sv = new Studierendenverwaltung()

sv.neuStudierend(42, "Ronja");

Studierend stud = sv.gibStudierend(42);

KlausurlistenVerwaltung kv = new Klausurlistenverwaltung();

kv.klausurlisteHinzu("WS19", "Inf");

kv.klausurHinzu("WS19", "Inf" ,4711 ,"23.12.15" ,0);

kv.pruefungsergebnisHinzu("WS19", "Inf", 4711, stud ,170);

// letzte Methode intern:

// kv sucht passende Klausurliste kli für ("WS19", "Inf")

// kli sucht passende Klausur kla für ("Inf", 4711)

// kla erzeugt neues Prüfungsergebnis und fügt es kla hinzu

Prof. Dr.
Stephan Kleuker

171OOAD

Typisches Sequenzdiagramm

• Objekte in Kopfzeile existieren (woher uninteressant)
• z. B. Klausur-Objekt hat Methode gibPruefungsergebnis(.,.)
• Parameter konkret (4711) oder abstrakt (stud) angebbar,

gleiches für Ergebnisse (Rückgabewerte)
• hier interne Methode klausurSuchen(.,.) weggelassen

Prof. Dr.
Stephan Kleuker

172OOAD

Beispiel: Initialisierung

• Anmerkung: Typischerweise
„befruchten“ sich Entwicklung von
Klassendiagrammen und
Sequenzdiagrammmen (Optimierung
in einem iterativen Prozess)

Prof. Dr.
Stephan Kleuker

173OOAD

Beispiel: Anstoß der Funktionalität

• Ablauf zeigt wieder die konsequente Delegation

• Verwaltung erhält Auftrag, nutzt teile der Parameter Zielobjekt
zu bestimmen und gibt Aufruf mit restlichen Parametern an
Zielobjekt weiter

Prof. Dr.
Stephan Kleuker

174OOAD

Beispiel: Projektstrukturplan

5.2 Fallstudie
Projektverwaltung

Prof. Dr.
Stephan Kleuker

175OOAD

Erste Iteration: Klassen finden

• Aktivitätsdiagramme werden durch Anforderungen
konkretisiert

• Text der Anforderungen ist Grundlage zum Finden erster
Klassen

• Im Text werden Objekte identifiziert; sind Individuen, die durch
Eigenschaften (Exemplarvariablen) und angebotene
Funktionalität charakterisiert werden

• grober Ansatz: Nomen in Anforderungen und Glossar ansehen;
können Objekte oder Eigenschaften sein

• Adjektive können auf Eigenschaften hindeuten

• Informationen in Klassen gesammelt; Klassen beschreiben
Struktur, die jedes Objekt hat

• verwandter Begriff: Domain Model

Prof. Dr.
Stephan Kleuker

176OOAD

Analyse der Anforderungen – Ausschnitt 1. Iteration
A1.1: In der Projektbearbeitung muss das System der nutzenden

Person die Möglichkeit bieten, ein neues Projekt mit
Projektausgangsdaten anzulegen.

• Glossar Projektausgangsdaten: automatisch vergebene
eindeutige Projektnummer, Projektname, geplanter Start- und
Endtermin, geplanter Aufwand

• gefunden: Klasse Projekt mit Exemplarvariablen
Projektnummer, Projektname, geplanter Starttermin, geplanter
Endtermin, geplanter Aufwand

A1.2: Nach Abschluss der Eingabe (mit „Return“-Taste oder
Bestätigungsknopf) bei der Bearbeitung von Daten muss das
System neu eingegebene Daten in seine permanente
Datenhaltung übernehmen.

A1.3: In der Projektbearbeitung muss das System der nutzenden
Person die Möglichkeit bieten, jedes Projekt auszuwählen.

• gefunden: keine Klassen oder Exemplarvariablen
(Funktionalität später)

Prof. Dr.
Stephan Kleuker

177OOAD

UML-Notation

• / bedeutet abgeleitet, d. h. kann aus anderen Modelinformationen
berechnet werden (meist in Modellen weggelassen)

Prof. Dr.
Stephan Kleuker

178OOAD

Zusammenhang Klasse und Objekt

• Objekte lassen sich auch in der UML darstellen
• Kasten mit unterstrichenem „:<Klassenname>“
• vor Doppelpunkt optional Objektname
• Objekte werden nicht im Klassendiagramm dargestellt (aber in

Sequenzdiagrammen, dann ohne Objektvariablen)

Prof. Dr.
Stephan Kleuker

179OOAD

Tracing-Information (was wo) festhalten

• Zuordnung welche Anforderung wie (ganz, teilweise)
in welchen UML-Elementen umgesetzt

• (besser in einem Tool oder Text)

A1.1
A1.2
A1.3
A1.4
A1.5
A1.6
A1.7
A1.8
A1.9
A1.10
A1.11
A1.12
A1.13

-aufgaben

*

A1.7

Prof. Dr.
Stephan Kleuker

180OOAD

UML unterstützt iteratives Vorgehen

• UML-Teile weggelassen bzw. ausblenden, abhängig von
notwendigen bzw. vorhandenen Teilinformationen

• Je implementierungsnäher desto detaillierter

Prof. Dr.
Stephan Kleuker

181OOAD

2. Iteration: Methoden suchen

• Methoden stehen für Funktionalität, die ein Objekt anbietet;
typisch: Zustand (d. h.) Exemplarvariable ändern, Ergebnis
basierend auf Exemplarvariablen berechnen

• Ansatz 1: Analysiere Verben im Text
• Ansatz 2: Aus Use Cases lässt sich häufig eine Steuerungsklasse

(Koordinationsklasse) ableiten
• folgende Anforderungen an die Klassenformulierung müssen

beachtet werden:
– Klassen übernehmen jeweils eine Aufgabe und besitzen

genau die zur Durchführung benötigten Methoden und die
für die Methoden benötigten Exemplarvariablen

– Klassen sollen möglichst wenig andere Klassen kennen,
wodurch die Schnittstellenanzahl gering gehalten wird

• (Hinweis: unser Projektverwaltungsbeispiel ist datenlastig,
deshalb wenige Methoden)

5.3

Prof. Dr.
Stephan Kleuker

182OOAD

Beispiel: zweite Analyse der Anforderungen

A1.3: In der Projektbearbeitung muss das System die Möglichkeit bieten, jedes
Projekt auszuwählen.

• Steuerungsklasse Projektverwaltung

• Exemplarvariablen: alle Projekte und selektiertes Projekt

• Projektauswahl ist set-Methode

A1.4: Nach der Projektauswahl muss das System der nutzenden Person die
Möglichkeit bieten, für existierende Projekte neue Teilprojekte anzulegen.

• Wie bei Mengen von Werten üblich, wird meistens eine add- und eine delete-
Methode gefordert. In diesem Fall nur teilprojektHinzufuegen(Projekt): void

A1.7: Nach der Projektauswahl muss das System der nutzenden Person die
Möglichkeit bieten, neue Projektaufgaben mit dem Aufgabennamen, dem
geplanten Start- und Endtermin, dem Arbeitsanteil der mitarbeitenden Person
und dem geplanten Aufwand zu definieren.

• Projekt hat Methode aufgabeHinzufuegen(Projektaufgabe): void

• Konstruktor Aufgabe(String, Datum, Datum, int, int)

Prof. Dr.
Stephan Kleuker

183OOAD

Klassendiagramm

Prof. Dr.
Stephan Kleuker

184OOAD

Vererbung

• Analysemodell wird auf erste Optimierungen geprüft
• Wenn Objekte verschiedener Klassen große Gemeinsamkeiten

haben, kann Vererbung genutzt werden
• Variante 1: Abstrakte Klasse mit möglichen Exemplarvariablen,

einigen implementierten und mindestens einer nicht-
implementierten Methode

• Variante 2: Interface ausschließlich mit abstrakten Methoden
(haben später noch Bedeutung)

• Vererbung reduziert den Codierungsaufwand
• Vererbung erschwert Wiederverwendung
• Vererbung ist Hilfsmittel nicht Ziel der Objektorientierung
• Liskovsches Prinzip für überschreibende Methoden der

erbenden Klassen berücksichtigen:
– Vorbedingung gleich oder abschwächen
– Nachbedingungen gleich oder verstärken

Prof. Dr.
Stephan Kleuker

185OOAD

Beispiel: Vererbung

nächster Schritt: Prüfen, wo statt Projekt und Projektaufgabe
Projektkomponente stehen kann (Abstrahierung)

Prof. Dr.
Stephan Kleuker

186OOAD

Klassen: von Analyse zum Design

• hier steht zunächst Analyseklassenmodell im Vordergrund, dass
meist nicht genauso implementiert wird

• Klassenmodell wird schrittweise in Richtung „sinnvoll
programmierbar“ umgebaut

• in „sinnvoll“ gehen Erfahrungen und Randbedingungen ein (z.
B. Web-Applikation)

• Erfahrungen zum guten Design werden u. a. mit Design-Pattern
dokumentiert (wichtig, aber später)

• mit Design-Erfahrungen wird erstes Klassenmodell bei
Erstellung besser (gibt dann nur ein zentrales Klassenmodell)

Prof. Dr.
Stephan Kleuker

187OOAD

Validierung mit Sequenzdiagrammen

• Sequenzdiagramme beschreiben, wie Objekte bei anderen
Objekten Methoden aufrufen

• Mit Hilfe des erreichten Modells kann man mit
Sequenzdiagrammen validieren, ob die im Aktivitätsdiagramm
beschriebenen Abläufe möglich sind

• Sequenzdiagramme in der klassischen Form beschreiben damit
Beispielabläufe

5.4

Prof. Dr.
Stephan Kleuker

188OOAD

Darstellungsvarianten in Sequenzdiagrammen
• rechte Seite zeigt

verschiedene
Darstellungsmöglichkeiten
eines Methodenaufrufs

• Rückgabewerte werden
weggelassen, wenn nur
Ablauf wichtig

• Aktivitätsbalken (optional)
verdeutlicht, dass Objekt
aktiv ist (rechnet, wartet)

• visualisiert in Klasse 1 die
Zeile

 y = objekt2.methodex(45,x);

• letzte Variante meist am
intuitivsten (in VL genutzt
ohne Aktivitätsbalken)

Prof. Dr.
Stephan Kleuker

189OOAD

Iterative Entwicklung und Validierung

Beispielablauf

• Ableitung von Methodennamen

• Zeichnen eines kleinen Sequenzdiagramms mit dieser
Methode; feststellen, ob weitere Methoden benötigt

• Ergänzung von Methodenparametern

• Ergänzung des Sequenzdiagramms um Parameter; feststellen,
ob weitere Methoden benötigt

• Falls kein Sequenzdiagramm herleitbar, auf Ursachenforschung
gehen (Modellfehler?)

• Optimales Ziel: Mögliche Durchläufe durch
Aktivitätsdiagramme werden abgedeckt

Video

Video

https://youtu.be/ZyjGtpJsdV4

Prof. Dr.
Stephan Kleuker

190OOAD

Zusammenhang zwischen Aktivitäts- und
Sequenzdiagrammen

für jeden möglichen
Durchlauf durch das
Aktivitätsdiagramm
wird ein
Sequenzdiagramm,
evtl. zusammengesetzt,
erstellt

Prof. Dr.
Stephan Kleuker

191OOAD

Iterative Entwicklung eines Sequenzdiagramms

• generell: zunächst unterspezifiziert,

• dann Parameter verfeinern

• abstrakter Ablauf (x) oder konkreter
Beispielablauf (mit Werten)

• Ergänzung interner Berechnungen, z.
B. in A z = this.oh();

• interne Collections meist nicht
dargestellt

• Darstellung aber möglich, in B:
public void hinzu(C c){

 l.add(c);

}

:A b:B
tues()

z=oh()

tues(x)

tues(42)

l:Set

hinzu(c)

hinzu(c)
add(c)

Prof. Dr.
Stephan Kleuker

192OOAD

Highlevel-Sequenzdiagramme (nur Ausblick)

Prof. Dr.
Stephan Kleuker

193OOAD

Beispiel: Fertigstellungsgrad berechnen

Prof. Dr.
Stephan Kleuker

194OOAD

Beispiel: Prüfung Aufwandsänderung Projektaufgabe

Prof. Dr.
Stephan Kleuker

195OOAD

Sequenzdiagramm – Detailgrad (1/3)

• man kann alle Objekte einzeichnen oder unwichtige weglassen

Prof. Dr.
Stephan Kleuker

196OOAD

Sequenzdiagramm – Detailgrad (2/3)

• man kann alle Objekte einzeichnen oder unwichtige weglassen

Prof. Dr.
Stephan Kleuker

197OOAD

Sequenzdiagramm – Detailgrad (3/3)

• theoretisch: kann man Methoden detailliert zeigen

Prof. Dr.
Stephan Kleuker

198OOAD

Sequenzdiagramm und Kommunikationsdiagramm

• gleiches Ausdrucksvermögen wie einfache Sequenzdiagramme

• Zusammenspiel der Objekte wird deutlicher

• interne Berechnung 2.1, 2.2 (ggfls. 2.1.1, 2.1.1.1)

Prof. Dr.
Stephan Kleuker

199OOAD

GUI-Modellierung

• fachlich hängt Oberfläche (GUI, Graphical User Interface) eng
mit unterliegendem Geschäftsklassenmodell (bisher behandelt)
zusammen

• möglicher Ansatz: „Mache alle Modellanteile an der Oberfläche
sichtbar, die eine nutzende Person ändern oder für dessen
Inhalte er sich interessieren kann.“

• Variante: mache ersten GUI-Prototyp und halte bei Ein- und
Ausgaben fest, welche Modellinformationen sichtbar sein
sollen

• GUI-Prototyp gut mit auftraggebenden Personen diskutierbar

• Hinweis: Thema Softwareergonomie

5.5

Video

Video

https://youtu.be/FQizDJqX69A

Prof. Dr.
Stephan Kleuker

200OOAD

Erweiterung mit Boundary-Klassen

Prof. Dr.
Stephan Kleuker

201OOAD

Sequenzdiagramm mit Nutzungsdialog

Prof. Dr.
Stephan Kleuker

202OOAD

Anforderungsverfolgung

Typische Fragen:

• Werden alle Anforderungen umgesetzt?

• Wo werden Anforderungen umgesetzt?

• Gibt es Spezifikationsanteile, die nicht aus Anforderungen
abgeleitet sind?

• Woher kommt eine Klasse, eine Methode, ein Parameter?

• Was passiert, wenn ich eine Anforderung oder eine Klasse
ändere?

• Generell werden die Fragen wesentlich komplexer zu
beantworten, wenn Software später umgebaut oder erweitert
wird

Prof. Dr.
Stephan Kleuker

203OOAD

Anforderungsverfolgung - Beispielzusammenhänge

Prof. Dr.
Stephan Kleuker

204OOAD

6. Vom Klassendiagramm zum
Programm

6.1 CASE-Werkzeuge

6.2 Übersetzung einzelner Klassen

6.3 Übersetzung von Assoziationen

6.4 Spezielle Arten der Objektzugehörigkeit

6.5 Aufbau einer Software-Architektur

6.6 Weitere Schritte zum lauffähigen Programm

Video

Video

https://youtu.be/MAKu2cshkoo

Prof. Dr.
Stephan Kleuker

205OOAD

Analyse des Ist-Standes

• bekannter Weg: Wünsche des auftraggebenden
Unternehmens, Anforderungsformulierung, Analyse-Modell

• Analysemodell kann realisiert werden, aber:

– Klassen kaum für Wiederverwendung geeignet

– Programme meist nur aufwändig erweiterbar

– viele unterschiedliche Lösungen zu gleichartigen Problemen

• deshalb: fortgeschrittene Designtechniken studieren

• aber: um fortgeschrittenes Design zu verstehen, muss man die
Umsetzung von Klassendiagrammen in Programme kennen
(dieses Kapitel)

• aber: um fortgeschrittenes Design zu verstehen, muss man
einige OO-Programme geschrieben haben

Prof. Dr.
Stephan Kleuker

206OOAD

UML-Toolsuiten / CASE-Werkzeuge

Theorie:
• UML-Werkzeuge unterstützen die automatische Umsetzung von

Klassendiagrammen in Programmgerüste (Skelette)
• entwickelnde Personen müssen die Gerüste mit Code füllen
• viele Werkzeuge unterstützen Roundtrip-Engineering, d.h.

Änderungen im Code werden auch zurück in das Designmodell
übernommen (wenn man Randbedingungen beachtet)

• Roundtrip beinhaltet auch Reverse-Engineering
Praxis:
• sehr gute kommerzielle Werkzeuge; allerdings muss man für

Effizienz Suite von Werkzeugen nutzen; d. h. auf deren
Entwicklungsweg einlassen

• ordentliche nicht kommerzielle Ansätze für Teilgebiete; allerdings
Verknüpfung von Werkzeugen wird aufwändig

6.1

Prof. Dr.
Stephan Kleuker

207OOAD

Übersetzung einfacher Diagramme (1/4)

Anmerkung: auch
bei Realisierung
kann vereinbart
werden, dass get-
und set-Methoden
in Übersichten
weggelassen (und
damit als gegeben
angenommen)
werden

Klassenmethoden
sind unterstrichen

6.2

Prof. Dr.
Stephan Kleuker

208OOAD

Übersetzung einfacher Diagramme (2/4)
public class Mitarbeitend {
 /**
 * @uml.property name="minr"
 */
 private int minr;
 /**
 * Getter of the property <tt>minr</tt>
 * @return Returns the minr.
 * @uml.property name="minr"
 */
 public int getMinr() {
 return minr;
 }
 /**
 * Setter of the property <tt>minr</tt>
 * @param minr The minr to set.
 * @uml.property name="minr"
 */
 public void setMinr(int minr) {
 this.minr = minr;
 }

Prof. Dr.
Stephan Kleuker

209OOAD

private String vorname = "";

 public String getVorname() {

 return vorname;

 }

 public void setVorname(String vorname) {

 this.vorname = vorname;

 }

 private String nachname = "";

 public String getNachname() {

 return nachname;

 }

 public void setNachname(String nachname) {

 this.nachname = nachname;

 }

Übersetzung einfacher Diagramme (3/4)

Prof. Dr.
Stephan Kleuker

210OOAD

private static int mitarbeitendzaehler;

 public static int getMitarbeitendzaehler() {

 return Mitarbeitend.mitarbeitendzaehler;

 }

 public static void setMitarbeitendzaehler

 (int mitarbeitendzaehler) {

 Mitarbeitend.mitarbeitendzaehler

 = mitarbeitendzaehler;

 }

}

Übersetzung einfacher Diagramme (4/4)

= evtl. notwendige Korrekturen, bei CASE-Werkzeug

Prof. Dr.
Stephan Kleuker

211OOAD

Notwendige Code-Ergänzung durch Entwicklung

public Mitarbeitend(String vorname, String nachname){

 this.vorname = vorname;

 this.nachname = nachname;

 this.minr = Mitarbeitend.mitarbeitendzaehler++;

}

@Override

public String toString() {

 return minr + ": " + this.vorname + " " + this.nachname;

}

= von entwickelnden Personen ergänzt

Prof. Dr.
Stephan Kleuker

212OOAD

Umgang mit Assoziationen im Design

• Assoziationen zunächst nur Strich mit Namen (und
Multiplizitäten)

• für Implementierung jede Assoziation konkretisieren (Richtung
der Navigierbarkeit, Multiplizitäten sind Pflicht)

public class Projektaufgabe {
 /** werkzeugspezifische Kommentare weggelassen
 */
 private Mitarbeitend bearbeitend;
 public Mitarbeitend getBearbeitend() {
 return this.bearbeitend;
 }
 public void setBearbeitend(Mitarbeitend bearbeitend) {
 this.bearbeitend = bearbeitend;
 }
}

6.3

Video

Video

https://youtu.be/xqs52kw87Cc

Prof. Dr.
Stephan Kleuker

213OOAD

Multiplizität 1

• Objekreferenz darf nie null sein

private Mitarbeitend bearbeitend = new Mitarbeitend();

• oder im Konstruktor setzen

• man sieht, default-Konstruktoren sind auch hier hilfreich;
deshalb, wenn irgendwie möglich definieren

• Gleiche Problematik mit der Werte-Existenz, bei Multiplizität
1..n

Prof. Dr.
Stephan Kleuker

214OOAD

Multiplizität n (1/2)
• Umsetzung als Collection (Sammlung, Container)

• Umsetzung hängt von Art der Collection ab
– sollen Daten geordnet sein
– sind doppelte erlaubt
– gibt es spezielle Zuordnung key -> value

• entwickelnde Person muss zur Typwahl spätere Nutzung kennen
• eine Umsetzung für 1..*

import java.util.List;
import java.util.ArrayList;
public class Projektaufgabe {
private List<Mitarbeitend> bearbeitend = new ArrayList<>();

• bitte, bitte in Java nicht alles mit ArrayList realisieren (!!!)
• Multiplizität 0..7 als Array umsetzbar

Prof. Dr.
Stephan Kleuker

215OOAD

Multiplizität n (2/2)

• Zum Codefragment der letzten Zeile passt besser folgendes
Klassendiagramm

• Hinweis: Standardhilfsklassen z. B. aus der Java-
Klassenbibliothek oder der C++-STL werden typischerweise in
Klassendiagrammen nicht aufgeführt

• Anmerkung: man sieht die UML-Notation für generische (oder
parametrisierte) Klassen

• UML-Werkzeuge unterscheiden sich bei der Generierung und
beim Reverse-Engineering beim Umgang mit Collections

*

Prof. Dr.
Stephan Kleuker

216OOAD

Collections in UML

• Constraints (Randbedingungen) stehen in geschweiften
Klammern (weitere Möglichkeiten -> Object Constraint
Language, OCL)

• unique: eindeutig, nur einmal

• ordered: geordnet, sortiert oder Reihenfolge beibehaltend

• unique: Set

• ordered: List

• notunique, unordered: MultiSet

• Default ohne Angabe ist: {unique, unordered}

Prof. Dr.
Stephan Kleuker

217OOAD

Collections in der Programmierung

• Jede OO-Programmiersprache hat große Sammlung an
Umsetzungen von Collections

• UML lässt meist trotz Constraints verschiedene Umsetzungen
zu

• Java: Beispielumsetzungen für Set

– HashSet: generell recht schnelles Einfügen und Löschen

– TreeSet: garantiert log(n) für Basisfunktionalität, nutzt
Ordnung der Elemente (Interface Comparable<>)

– LinkedSet: behält beim Iterieren die Reihenfolge der
Eintragungen ein (ordered)

– org.apache.commons.collections.list.SetUniqueList: Liste
mit eindeutigen (unique) Einträgen

– …

Prof. Dr.
Stephan Kleuker

218OOAD

Qualifizierte Assoziationen

• qualifizierendes Attribut als Teil der Assoziation angegeben

• steht typischerweise für Map (Dictionary)

private Map<Integer,Studierend> studierende

• zu jeder der Vorlesung bekannten Matrikelnummer gehört
genau ein Studierend-Objekt

• andere Multiplizitäten (0..1, *) möglich

Prof. Dr.
Stephan Kleuker

219OOAD

Arten der Zugehörigkeit (Aggregation 1/2)
• nicht exklusiver Teil eines Objekts (Mitarbeitend-Objekt kann bei

mehreren Projektaufgaben bearbeitende Person sein)

in C++: Mitarbeitend *bearbeitend;
 Mitarbeitend* Projektaufgabe::getBearbeitend(){
 return bearbeitend;}

 oder Mitarbeitend bearbeitend;
 Mitarbeitend& Projektaufgabe::getBearbeitend(){
 return bearbeitend;}

Realisierungsproblem: Projektaufgabe kann Namen der
bearbeitenden Person ändern
 bearbeitend->setNachname("Meier");

• Kann als Verstoß gegen Kapselung (Geheimnisprinzip)
angesehen werden

• Designansatz: Klasse erhält Interface, die Methoden enthält, die
bestimmte andere Klassen nutzen können

6.4

Prof. Dr.
Stephan Kleuker

220OOAD

Arten der Zugehörigkeit (Aggregation 2/2)

• Designansatz: Verhindern unerwünschten Zugriffs durch
Interface (generell gute Idee !)

Kurzdarstellung
Interfacerealisierer:

Prof. Dr.
Stephan Kleuker

221OOAD

Arten der Zugehörigkeit (Komposition 1/2)

• Konkretisierung der Zugehörigkeit: existenzabhängiges Teil,
Exemplarvariable gehört ausschließlich zum Objekt (Mitarbeitend-
Objekt kann [unrealistisch] nur exakt eine Projektaufgabe
bearbeiten; niemand anderes nutzt dieses Objekt)

• Realisierung in C++
Mitarbeitend bearbeitend;

Mitarbeitend Projektaufgabe::getBearbeitend (){

 return bearbeitend;

}

• Bei Rückgabe wird Kopie des Objekts erstellt und zurückgegeben

Prof. Dr.
Stephan Kleuker

222OOAD

Arten der Zugehörigkeit (Komposition 2/2)

• Java arbeitet nur mit Referenzen (unschöne Ausnahme sind
Elementartypen), wie realisiert man

 @Override // in Mitarbeitend.java
 public Mitarbeitend clone(){ // echte Kopie
 Mitarbeitend ergebnis = new Mitarbeitend();
 ergebnis.minr = minr;
 ergebnis.nachname = nachname; //Strings sind
 ergebnis.vorname = vorname; //Konstanten
 return ergebnis;
 }

 // in Projektaufgabe
 public Mitarbeitend getBearbeitend() {
 return this.bearbeitend.clone();
 }

• Variante: bei Realisierung überall doll aufpassen

Prof. Dr.
Stephan Kleuker

223OOAD

Kurzzeitige Klassennutzungen
• Klassen nutzen andere Klassen nicht nur für Exemplar- (und

Klassen-) Variablen
• Klassen erzeugen Objekte anderer Klassen lokal in Methoden, um

diese weiter zu reichen
public class Projektverwaltung {
 private Projekt selektiertesProjekt;
 public void projektaufgabeErgaenzen(String name){
 Projektaufgabe pa = new Projektaufgabe(name);
 selektiertesProjekt.aufgabeHinzufuegen(pa);
 }

• Klassen nutzen Klassenmethoden anderer Klassen
• In der UML gibt es hierfür den „Nutzt“-Pfeil

• Wenn zu viele Pfeile im Diagramm, dann mehrere Diagramme mit
gleichen Klassen zu unterschiedlichen Themen

• UML-Werkzeuge unterstützen Analyse von Abhängigkeiten

Prof. Dr.
Stephan Kleuker

224OOAD

Erstellen einer Softwarearchitektur

• Ziel des Design ist ein Modell, welches das Analysemodell
vollständig unter Berücksichtigung
implementierungsspezifischer Randbedingungen umsetzt

• allgemeine Randbedingungen: Es gibt ingenieurmäßige
Erfahrungen zum gutem Aufbau eines Klassensystems; dieses
wird auch SW-Architektur genannt

• Ziele für die Architektur

– Performance

– Wartbarkeit

– Erweiterbarkeit

– Verständlichkeit

– schnell realisierbar

– Minimierung von Risiken

6.5

Prof. Dr.
Stephan Kleuker

225OOAD

Systematische Entwicklung komplexer Systeme

• Für große Systeme entstehen viele Klassen; bei guten Entwurf:

• Klassen die eng zusammenhängen (gemeinsame
Aufgabengebiete)

• Klassen, die nicht oder nur schwach zusammenhängen
(Verknüpfung von Aufgabengebieten)

• Strukturierung durch SW-Pakete; Pakete können wieder Pakete
enthalten

Prof. Dr.
Stephan Kleuker

226OOAD

Typische 3-Schichten-SW-Architektur
• Ziel: Klassen eines oberen Pakets greifen

nur auf Klassen eines unteren Paketes zu
(UML-“nutzt“-Pfeil)

• Änderungen der oberen Schicht
beeinflussen untere Schichten nicht

• Analysemodell liefert typischerweise nur
Fachklassen

• Datenhaltung steht für Persistenz
• typisch Varianten von 2 bis 5 Schichten
• Klassen in Schicht sollten gleichen

Abstraktionsgrad haben
• Schicht in englisch „tier“
• obere und untere Schichten können stark

von speziellen Anforderungen abhängen
(später)

Prof. Dr.
Stephan Kleuker

227OOAD

Beispiel: grobe Paketierung (eine Variante)

• Anmerkung: Datenverwaltung noch nicht konzipiert

Prof. Dr.
Stephan Kleuker

228OOAD

Beispiel: grobe Paketierung (zweite Variante)

Prof. Dr.
Stephan Kleuker

229OOAD

Forderung: azyklische Abhängigkeitsstruktur

Prof. Dr.
Stephan Kleuker

230OOAD

Umsetzung von Paketen in Java und C++

package fachklassen.projektdaten;
import fachklassen.projektmitarbeit.Mitarbeitend;
public class Projektaufgabe {
 private Mitarbeitend bearbeitend;
 /* ... */
}

#include "Mitarbeitend.h" //evtl. mit Dateibaum
using namespace Fachklassen::Projektmitarbeit;
namespace Fachklassen{
 namespace Projektdaten{
 class Projektaufgabe{
 private:
 Mitarbeitend *bearbeitend; // ...
 };
 }
}

Prof. Dr.
Stephan Kleuker

231OOAD

Paketnamen und Strukturierungsmöglichkeiten

• gibt in Programmiersprachen Regeln für Paketnamen

• Beispiel: Firma mit Webseite meineFirma.de

• Paketnamen beginnen immer mit de.meineFirma

• Pakete orientieren sich an Architekturstilen

• Beispiel: Boundary – Control – Entity

• man kann Pakete z. B. auch nach Use Cases ordnen

• Interfaces können in anderen Paketen getrennt von
Implementierung stehen

• ein oder mehrere Pakete werden in Java als jar-Datei
ausgeliefert

Prof. Dr.
Stephan Kleuker

232OOAD

Paketabhängigkeiten optimieren

• Ziel ist es, dass Klassen sehr eng zusammenhängen; es weniger
Klassen gibt, die eng zusammenhängen und viele Klassen und
Pakete, die nur lose gekoppelt sind

• Möglichst bidirektionale oder zyklische Abhängigkeiten
vermeiden

• Bei Paketen können Zyklen teilweise durch die Verschiebung
von Klassen aufgelöst werden

• Wenig globale Pakete (sinnvoll für projektspezifische Typen (z.
B. Enumerations), Konstanten, Utility-Klassen und Ausnahmen)

• Es gibt viele Designansätze, Abhängigkeiten zu verringern bzw.
ihre Richtung zu ändern

Prof. Dr.
Stephan Kleuker

233OOAD

Trick: Abhängigkeit umdrehen

• generell können Interfaces häufiger in anderen Paketen liegen,
als ihre implementieren Klassen

• Java-Klassenbibliothek Swing fordert häufig die Interface-
Implementierung bei der Ereignisbehandlung

Video

Video

https://youtu.be/oM-jFKsQmZk

Prof. Dr.
Stephan Kleuker

234OOAD

Architektursichten

• Paket- und Klassendiagramme geben einen guten Überblick
über die Ergebnisse des statischen SW-Entwurfs

• Es gibt aber mehr Sichten (Betrachtungsweisen), die für eine
vollständige SW-Architektur relevant sind

• z. B. wurde die HW des zu entwickelnden Systems noch nicht
berücksichtigt

• Diese Sichten müssen zu einem System führen; deshalb müssen
sich Sichten überlappen

• z. B. eigenes Diagramm mit Übersicht über eingesetzte
Hardware und Vernetzung; dazu Information, welche SW wo
laufen soll

6.6

Prof. Dr.
Stephan Kleuker

235OOAD

Logische Sicht

- funktionale Ana-

 lyseergebnisse

- Klassenmodell

4+1 Sichten

Ablaufsicht

- Prozesse

- Nebenläufigkeit

- Synchronisation

Physische Sicht

- Zielhardware

- Netzwerke

Implementierungs-

 sicht

- Subsysteme

- Schnittstellen

Szenarien

Prof. Dr.
Stephan Kleuker

236OOAD

4+1 Sichten mit (Teilen der) UML

Logische Sicht
- Klassendiagramme
- Paketdiagramme

Ablaufsicht
- Sequenzdiagramme
- Kommunikations-
 diagramme
- Zustandsdiagramme

Physische Sicht

- Deployment-

 diagramme

Implementierungs-

 sicht

- Komponenten-

 diagramme

Szenarien
-Use Case-Diagramme

- Aktivitätsdiagramme

Prof. Dr.
Stephan Kleuker

237OOAD

• wichtig für verteilte Systeme; bzw. Systeme, die verteilt (auch
auf einem Rechner) laufen

• Festlegen der Prozesse

• Festlegen etwaiger Threads

• so genannte aktive Klassen; werden Objekte dieser Klassen
gestartet, so starten sie als eigenständige Prozesse/Threads

• Prozessverhalten u. a. durch Sequenzdiagramme beschreibbar

• (später etwas mehr; gibt eigenes Modul dazu)

aktivesObjekt:
AktiveKlasse

Ablaufsicht

AktiveKlasse

Prof. Dr.
Stephan Kleuker

238OOAD

Implementierungssicht

• Das Designmodell muss physikalisch realisiert werden; es muss
eine (ausführbare) Datei entstehen

• Pakete fassen als Komponenten realisiert Klassen zusammen

• häufig werden weitere Dateien benötigt: Bilder, Skripte zur
Anbindung weiterer Software, Installationsdateien

• Komponenten sind austauschbare Bausteine eines Systems mit
Schnittstellen für andere Komponenten

• Typisch ist, dass eine Komponente die Übersetzung einer Datei
ist

• Typisch ist, dass eine Komponente die Übersetzung eines
Pakets ist; in Java .jar-Datei

Prof. Dr.
Stephan Kleuker

239OOAD

Komponentendiagramm

• Bilder zeigen zwei alternative Darstellungen

• Komponenten bieten
Schnittstellen(realisierungen) (Kreis) und
benötigen Schnittstellen(realisierungen)
(Halbkreis)

• Komponenten können über Schnittstellen in
Diagrammen verknüpft werden

• in die Komponenten können die zugehörigen
Klassen eingezeichnet werden

• Ports erlauben den Zugriff auf bestimmten Teil
der Klassen und Interfaces (nicht im Diagramm)

Prof. Dr.
Stephan Kleuker

240OOAD

Physische Sicht: vorgegebene HW mit Vernetzung

• Einsatz- und Verteilungsdiagramm (deployment diagram)

• Knoten steht für physisch vorhandene Einheit, die über
Rechenleistung oder/und Speicher verfügt

• <<executable>> (ausführbare Datei) und <<artifact>> (Datei)
müssen zur HW-Beschreibung nicht angegeben werden

Prof. Dr.
Stephan Kleuker

241OOAD

Java Module (1/7)

• vor Java 9: alle genutzten Bibliotheken (.jar, .zip) im Classpath
eingebunden

• Klassen und Pakete können doppelt sein oder sich überlappen,
Auswahl abhängig von Reihenfolgen im Classpath

• neuer Ansatz: Gruppen von Paketen in Modulen vereinigen

Vorteile:

• keine zirkulären Abhängigkeiten erlaubt, bessere Struktur

• ein Paket kann nur von einem Modul im Module-Path angeboten
werden (sonst Fehler)

• aus Modulen kann eigene Java-Applikation gebaut werden, die
nur notwenige Module der JRE enthält (statt immer vollständige
JRE (oder JDK) auszuliefern)

Nachteile später

Video

Video

https://youtu.be/mr_WBWhS-wk

Prof. Dr.
Stephan Kleuker

242OOAD

Java Module (2/7) – Modul Deskriptor module-info.java

// optionales „open“ ermoeglicht Reflection
open module de.hs-osnabrueck.meinProjekt.modxy {
 // Inhalt fuer alle nutzbar
 exports de.hs-osnabrueck.meinProjekt.paket1;

 // Unterpakete, wenn nach aussen sichtbar, sind anzugeben
 exports de.hs-osnabrueck.meinProjekt.paket1.subpaket2;

 // explizit festlegbar, welche Module zugreifen duerfen
 exports de.modulSpecial to anderesMod1, de.anderesMod2;

 // benoetigte Module angeben
 requires blubb.anderesModul;

 // damit andere genutzte Module dieses Moduls auch nutzen
 //koennen
 requires transitive blubb.modulInAnderesModulBenoetigt
}

Prof. Dr.
Stephan Kleuker

243OOAD

Java Module (3/7) – Beispiel Klassendiagramm

Prof. Dr.
Stephan Kleuker

244OOAD

Java Module (4/7) – in Eclipse

• jedes Modul als eigenes Projekt

• jedes Modul ein Deskriptor
modul-info.java

• Module als Jar-Dateien
exportiert

• Module werden im Module-
Path eingebunden

Prof. Dr.
Stephan Kleuker

245OOAD

Java Module (5/7) – Modul-Deskriptoren

open module guiModul {
 requires listenModul;
}

open module listenModul {
 requires transitive todoModul;
 exports ich.listenpack;
}

open module todoModul {
exports ich.todopack; // to listenModul, guiModul;

}

Prof. Dr.
Stephan Kleuker

246OOAD

Java Module (6/7) – Module Arten

• Java selbst in Module aufgeteilt, java.base automatisch eingetragen

• weitere Elemente der Java-Bibliothek müssen angegeben werden, z.
B. requires java.sql;

Application Explict Modules
• Module mit Modul-Deskriptor
• Variante:open, alles für

Reflection freigegeben

Automatic Modules
• klassische Jars ohne Modul-

Deskriptor
• exportiert alle Pakete
• importiert alle Pakete anderer

Module

Unnamed Modules
• klassische Jars ohne

Modul-Deskriptor
• werden zusammen als ein

Modul angesehen
• exportiert alle Pakete

M
o
d
u
l
e
p
a
t
h

C
l
a
s
s
p
a
t
h

Zugriffe

Prof. Dr.
Stephan Kleuker

247OOAD

Java Module (7/7) – kritische Analyse

• ab Java 9 müssen alle Klassen in Modulen enthalten sein

• damit wäre Inkompatibilität mit Java 8 riesig

• Trick: „alte“ Pakete gehören implizit zu einem Default-Modul
(unnamed module); unklar wie lang diese Lösung existiert; im
Module-Path werden alte Jars zu automatic modules

• viele Werkzeuge nutzen „Innereien“ der JVM, z. B. Reflection

• z. B. JPA, automatische Generierung und Nutzung von Tabellen
zu fast beliebigen Java-Klassen

• diese Nutzung ist per Default in Java 9 ausgeschaltet, muss über
„open“ ermöglicht werden (auch beim VM-Start konfigurierbar)

• viele Frameworks und Bibliotheken laufen immer (noch) nicht
mit Java ab Version 9 zusammen

• Fazit: keine klare Empfehlung, neues Projekt mit Modulen zu
machen

Prof. Dr.
Stephan Kleuker

248OOAD

8. Optimierung des
Designmodells

8.1 Design im Kleinen

8.2 Model View Controller

8.3 Vorstellung einiger GoF-Pattern

8.4 Abschlussbemerkungen zu Pattern

8.5 Patternorientierte Konzepte in der Programmierung

Video

Video

https://youtu.be/_5qKkidKjDw

Prof. Dr.
Stephan Kleuker

249OOAD

Zentrale Aufgabe: von Analyse zum Design (1/2)

• Analyse der Klassen:

– haben sie klar definierte Aufgabe

– können Klassen vereinigt werden

– sollten Klassen aufgeteilt werden

– welche Optimierungen sind aus Design-Sicht möglich?
(zentrale Frage, untersuchen wir weiter)

• Exemplar- und Klassenvariablen müssen Typen haben

• Variablen und Methoden brauchen Sichtbarkeiten

• Methoden brauchen Rückgabe- und Parametertypen
(Signaturen); in Java und C++ spielen Ausnahmen eine Rolle

Prof. Dr.
Stephan Kleuker

250OOAD

Zentrale Aufgabe: von Analyse zum Design (2/2)

• für Assoziationen

– Multiplizitäten beachten

– über mögliche Richtungen nachdenken

– Art der Zugehörigkeit klären

• GUI-Klassen und persistente Datenhaltung einbauen

• Anmerkung 1: Übergang von Analyse zu Design ist durch
Iterationen (Verfeinerungen) fließend

• Anmerkung 2: Die vorgestellten Regeln sind häufig 90-10
Regeln (in 90% müssen sie angewandt werden, bei Verstößen
muss man argumentieren können, warum)

Prof. Dr.
Stephan Kleuker

251OOAD

Einschub: Coding-Guidelines

• sehr wichtiges Hilfsmittel, damit alle Code lesen können

• auf den Folien wird für Kompaktheit teilweise drauf verzichtet

Praktikum: minimale Regeln

• Alle Imports ausschreiben import java.util.*

• Eine Variante von Einrückungen (Eclipse-Stil)

• Objektvariablen und Objektmethoden vorne mit this.
public int getMatnr() {

 return this.matnr;

}

• Bei if und Schleifen immer Block mit geschweiften Klammern

• Keine Klasse im Default-Package („ganz oben“)

• Alle Namen sind intuitiv lesbar für andere Leute

• Pro Zeile nur ein Befehl

• Java-übliche CamelCase-Notation

Prof. Dr.
Stephan Kleuker

252OOAD

Einfache Basisregeln

• KISS = Keep It Simple Stupid, man soll die einfachst mögliche
Realisierung wählen, die das Problem vollständig löst und gut
nachvollziehbar ist (kein „Quick and Dirty“, sondern eine klare
Entscheidung für einen einfachen Entwicklungsstil)

• YAGNI = You Ain’t Gonna Need It, keine Verallgemeinerungen
entwickeln, die das Design für theoretisch in der Zukunft
vielleicht gewünschte Erweiterungen vereinfachen

8.1

Prof. Dr.
Stephan Kleuker

253OOAD

Keine allwissenden Klassen

ändere Fertigstellungsgrad einer Projektaufgabe

besser:

Prof. Dr.
Stephan Kleuker

254OOAD

„Verpacken“ von Exemplarvariablen (Aggregation)

• Generell kann man für Exemplarvariablen vom Typ X statt einer
get-Methode alle Methoden von X anbieten, die man an die
Exemplarvariable weiterleiten will.

• Ansatz auch für Collections geeignet

• XNutzend: Aufrufe an x weiterleiten
(Methoden müssen nicht gleich heißen)

 public int getA(){
 return this.x.getA();
 }
 public void setA(int a){
 this.x.setA(a);
 }

Prof. Dr.
Stephan Kleuker

255OOAD

Erinnerung: Bedeutung von Schnittstellen
• Schnittstellen sind zentrales Element des Design by Contract
• vorgegebene Aufgabe: Implementiere mir folgende

Funktionalität ... beschrieben durch
– Vorbedingung
– Signatur <Sichtbarkeit> <Methodenname>(<Parameter>)...
– Nachbedingung

• entwickelnde Person realisiert OO-Programm (Details sind frei)
• entwickelnde Person garantiert, dass Schnittstelle (oder

Fassade) gewünschte Funktionalität liefert
• generell sollte man bei Vererbungen und Implementierungen

die am wenigsten spezielle benötigte Klasse nutzen; deshalb
 List<Projektaufgaben> aufgaben und nicht
 ArrayList<Projektaufgaben> aufgaben im Code

Prof. Dr.
Stephan Kleuker

256OOAD

• abstrakte Klasse stellt einen Vertrag dar

• Realisierer garantiert die gewünschte Funktionalität

• nutzende Person kann konkretes Objekt mit Funktionalität erhalten

• wie die Realisierung aussieht, ist allein Sache der realisierenden
Person

zentrale Folie: Design by Contract

Prof. Dr.
Stephan Kleuker

257OOAD

Grundidee von Design-Pattern

Damit nicht alle Klassen eng miteinander gekoppelt sind, gibt es
Ansätze:

• die Aufgaben einer Klasse von der Verwaltung der Klassen, die
Informationen dieser Klasse benötigen, zu trennen

• die Erzeugung von Objekten möglichst flexibel zu gestalten

• Interfaces zur Trennung von Implementierung und angebotenen
Methoden einzusetzen

• Hierzu werden so genannte Design-Pattern eingesetzt, die für einen
bestimmten Aufgabentyp eine flexible Lösung vorschlagen

• oft zitiert: E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Entwurfsmuster, Addison-Wesley, 2004 (Gang of Four [GoF]-Buch,
hier neuere Auflage)

8.2

Prof. Dr.
Stephan Kleuker

258OOAD

Model-View-Controller

• Typisch für graphische Oberflächen ist, dass es Objekte zur Eingabe
gibt, die zur Bearbeitung der eigentlichen Inhaltsklasse führen, die
dann eventuell zu Änderung der Anzeige führen

• Die Aufteilung in die drei genannten Aufgaben führt zum Model-
View-Controller (MVC)-Ansatz

• MVC wurde zuerst in Smalltalk Ende der 80'er des vorigen
Jahrhunderts eingesetzt:

– Model: Zustandsinformation der Komponente (Inhaltsklasse)

– View: Beobachter des Zustands, um diesen darzustellen; es kann
viele Views geben

– Controller: Legt das Verhalten der Komponente auf
Benutzungseingaben fest

Video

Video

https://youtu.be/-MRm3WtiXAI

Prof. Dr.
Stephan Kleuker

259OOAD

c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Variante: Model kennt View
// Erzeugung
View v = new View();
Model m = new Model(v);
Controller c = new Controller(m);

MVC – einfacher Kommunikationsablauf

Prof. Dr.
Stephan Kleuker

260OOAD

c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Erzeugung
View v = new View();
View2 v2 = new View2();
Model m = new Model(v, v2); // ???
Controller c = new Controller(m);

v2:View2

zeige()

genereller Ablauf
gut, aber Erstellung
hölzern

MVC: was bei mehreren Views

Prof. Dr.
Stephan Kleuker

261OOAD

c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Erzeugung
View v = new View();
View2 v2 = new View2();
Model m = new Model();
m.add(v);
m.add(v2);
Controller c = new Controller(m);

v2:View2

zeige()

besser, aber View vom
Model getrennt, neue
Daten immer als
Parameter von zeige()

MVC: mehrere Views

Prof. Dr.
Stephan Kleuker

262OOAD

v2:View2

c:Controller

m:Model
new Model()

// Erzeugung
Model m = new Model();
Controller c
 = new Controller(m);
View v = new View(m);
View2 v2 = new View2(m);

v:View

new View2(m)

new Controller(m)

add(this)

new View(m)

add(this)

extern

MVC: Model hält Sammlung angeschlossener Views

Prof. Dr.
Stephan Kleuker

263OOAD

c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

v2:View2

zeige()

getAktuell()

getAktuell()

MVC: Model hält Sammlung angeschlossener Views

Prof. Dr.
Stephan Kleuker

264OOAD

Java-Beispiel zum MVC (1/7)

Prof. Dr.
Stephan Kleuker

265OOAD

Java-Beispiel zum MVC (2/7)

Prof. Dr.
Stephan Kleuker

266OOAD

Java-Beispiel zum MVC (3/7)

public class XModel{
 private List<XModelListener>listener = new ArrayList<>();
 private int modellwert = 42;

 public void addXModelListener(XModelListener x){
 this.listener.add(x); //Verwaltung der Listener des Modells
 }

 public int getWert(){ //Auslesen der Modellinhalte
 return this.modellwert;
 }

 public void changeValue(int delta){ //Veränderung des Modells
 this.modellwert += delta;
 this.fireXModelChanged(); // alle informieren
 }

 private void fireXModelChanged(){
 for(XModelListener x: this.listener)
 x.xModelChanged();
 }
}

Prof. Dr.
Stephan Kleuker

267OOAD

Java-Beispiel zum MVC (4/7)

public class XView extends JFrame implements XModelListener{
 private XModel xmodel;
 private JLabel jlabel = new JLabel("Modellwert: ");
 public XView(XModel x){
 super("Ich bin der View");
 this.xmodel = x;
 this.xmodel.addXModelListener(this);
 //Rest Swing für Anzeige
 super.getContentPane().add(jlabel);
 super.setDefaultCloseOperation(EXIT_ON_CLOSE);
 super.setSize(250, 60);
 super.setLocation(0, 0);
 super.setVisible(true);
 }

 @Override
 public void xModelChanged() {
 this.jlabel.setText("Modellwert: "+this.xmodel.getWert());
 }
}

Prof. Dr.
Stephan Kleuker

268OOAD

Java-Beispiel zum MVC (5/7)
import java.awt.FlowLayout;
import java.awt.event.*; // hier zur Abkuerzung, in echten
import javax.swing.*; // Projekten diesen * vermeiden

public class XController extends JFrame{
 private XModel xmodel;

 public XController(XModel x){
 super("Ich bin der Controller");
 this.xmodel = x;
 super.getContentPane().setLayout(new FlowLayout());
 JButton plus = new JButton("plus");
 super.getContentPane().add(plus);
 plus.addActionListener(new ActionListener(){
 @Override
 public void actionPerformed(ActionEvent e){
 xmodel.changeValue(1);
 }}
);

Prof. Dr.
Stephan Kleuker

269OOAD

Java-Beispiel zum MVC (6/7)

JButton minus = new JButton("minus");
 super.getContentPane().add(minus);
 minus.addActionListener(new ActionListener(){
 @Override
 public void actionPerformed(ActionEvent e){
 xmodel.changeValue(-1);
 }}
);
 super.setDefaultCloseOperation(EXIT_ON_CLOSE);
 super.setSize(250, 60);
 super.setLocation(0, 90);
 super.setVisible(true);
 }
}

Prof. Dr.
Stephan Kleuker

270OOAD

Java-Beispiel zum MVC (7/7)

public interface XModelListener {
 public void xModelChanged();
 /* Anmerkung: alternativ kann man auch geänderte
 Werte als Parameter übertragen */
}

public class XStarter {
 public static void main(String[] args) {
 XModel x = new XModel();
 new XView(x);
 new XController(x);
 }
}

Prof. Dr.
Stephan Kleuker

271OOAD

Mehrere Views – mehrere Controller – ein Model

Prof. Dr.
Stephan Kleuker

272OOAD

Pattern-Varianten

Pattern schlagen eine mögliche Lösung vor; kann in Projekten
variiert werden

• Interface weglassen, wenn nur eine View-Art

• Aufteilung auch sinnvoll, wenn nur ein View existiert (klare
Aufgabentrennung)

• wenn Controller und View eng verknüpft, können sie vereinigt
werden, z. B. GUI-Elemente in Java-Swing

• Listenerverwaltung kann vom Model in Controller verlegt
werden

• auch ohne Listen ist MVC-Aufteilung sinnvoll

Prof. Dr.
Stephan Kleuker

273OOAD

aendere()

aendere()

zeige()

leseWerte()

// Erzeugung
Model m = new Model();
View v = new View(m);
Controller c = new Controller(m, v);

Ablaufvariante: Controller managt alles

c:Controller v:Viewm:Model

Prof. Dr.
Stephan Kleuker

274OOAD

// Internet
// Web-Seite (View) ruft Controller auf
// Controller ändert Model
// Controller erzeugt neuen View
// View berechnet aus Model neue Web-Seite,
// Web-Seite beinhaltet Verbindung zum Controller

Variante der Ablaufvariante: Controller managt alles

aendere()

aendere()

new View()

leseWerte()

c:Controller

neu:View

m:Modelalt:View

Prof. Dr.
Stephan Kleuker

275OOAD

MVC als Design-Konzept

• Kommunikationswege hängen von konkreter Umsetzung ab

• Viele Varianten:

– Model-Delegate (Controller und View zusammen)

– Model-View-ViewModel (eigenes Model für Darstellung)

– Model-View-Presenter

– Model-View-Adapter

• eine Umsetzung: Controller steuert Änderungen des Modells,
Modell teilt allen Views mit, dass eine Änderung aufgetreten ist

• folgende Folien: eine Verknüpfungsmöglichkeit in MVC

Prof. Dr.
Stephan Kleuker

276OOAD

Ansatz Observer-Observable

• Es gibt Subjekte für deren Zustand sich viele interessieren (z. B.
Nachrichtenkanäle)

• Die Subjekte bieten die Möglichkeit, dass sich Interessenten
anmelden (z. B. Kanal abonnieren)

• Bei jeder Subjektzustandsänderung werden Interessenten
informiert (neue Nachrichten)

• Interessent muss sich bei Subjekt anmelden

• Damit obiges Objekt weiß, wie Interessent angesprochen
werden soll, muss Interessent Schnittstelle realisieren

• Hinweis: Enge Verwandtschaft zur hier vorgestellten Model-
View-Controller-Variante

8.3

Video

Video

https://youtu.be/dm4doc4e57A

Prof. Dr.
Stephan Kleuker

277OOAD

Beobachter (Observer – Observable)

Prof. Dr.
Stephan Kleuker

278OOAD

Beobachter – Beispielaufgabe (1/5)

Gegeben sei obiges Klassendiagramm, das die Nutzung des
Observer-Pattern zeigt. Dabei interessieren sich Aktien handelnde
Personen für Aktienkurse und können sich bei Aktien anmelden,
die ihnen zuvor mit neueAktie übergeben wurden. Falls sich der
Wert dieser Aktien ändert, werden alle interessierten Handelnden
benachrichtigt, welche Aktie (ihr Name) sich geändert hat. Aktien
haben einen eindeutigen Aktiennamen.

-handelnde

*

HandelndInterface

+anmelden(h:HandelndInterface)

+Handelnd(handelndname:String)

-handelndname:String

Handelnd

Prof. Dr.
Stephan Kleuker

279OOAD

Beobachter – Beispielaufgabe (2/5)

import java.util.ArrayList;
import java.util.List;
public class Aktienverwaltung {
 private String aktienname;
 private List<HandelndInterface> handelnde
 = new ArrayList<>();

 protected Aktienverwaltung(String aktienname) {
 this.aktienname = aktienname;
 }

 public void anmelden(HandelndInterface h){
 this.handelnde.add(h);
 }

 public void benachrichtigen(){
 for(HandelndInterface h: this.handelnde)
 h.aktualisieren(aktienname);
 }

 public String getAktienname(){
 return this.aktienname;
 }
}

Prof. Dr.
Stephan Kleuker

280OOAD

Beobachter – Beispielaufgabe (3/5)

public class Aktie extends Aktienverwaltung {

 private int wert=42;
 public Aktie(String aktienname){
 super(aktienname);
 }

 public int getWert() {
 return this.wert;
 }

 public void setWert(int wert) {
 this.wert = wert;

super.benachrichtigen();
}

@Override
public String toString(){
return super.getAktienname();

}
}

Prof. Dr.
Stephan Kleuker

281OOAD

Beobachter – Beispielaufgabe (4/5)

public interface HandelndInterface {
 public void aktualisieren(String aktienname);
}

import java.util.ArrayList;
import java.util.List;
public class Handelnd implements HandelndInterface {

private String handelndname;
 private List<Aktie> aktien = new ArrayList<>();

 public Handelnd(String handelndname) {
 this.handelndname = handelndname;
 }

 public void neueAktie(Aktie a){
 this.aktien.add(a);
 a.anmelden(this);
 }

Prof. Dr.
Stephan Kleuker

282OOAD

Beobachter – Beispielaufgabe (5/5)

public void aktualisieren(String aktienname) {
 System.out.println(handelndname
 + " hat neuen Wert für " + aktienname + ": "
 + this.holeAktienWert(aktienname));
 }

 //alternativ beim Aktualisieren Wert mitschicken
 private int holeAktienWert(String aktienname){
 for(Aktie a: this.aktien)

if(a.getAktienname().equals(aktienname)) {
return a.getWert();

}
//nie erreichen

 assert(false); // Java, ist nicht JUnit!
 return 0;
 }

@Override
public String toString(){
return this.handelndname;

}
}

Prof. Dr.
Stephan Kleuker

283OOAD

Pattern und Varianten

• Für fast jedes Pattern gibt es Varianten, die abhängig von
Randbedingungen sinnvoller sein können

Bsp.: Wertänderung mit aktualisieren() übertragen

Bsp.: Java hat keine Mehrfachvererbung

• Subjekt wird Interface

• Listenverwaltung in

 Hilfsklasse

• Konkretes Subjekt

 delegiert Listen-

 aufgaben an Objekt

 der Hilfsklasse

Prof. Dr.
Stephan Kleuker

284OOAD

Adapter - Problem

Szenario:

• Klasse IchBrauchB benötigt ein Objekt der Klasse B, genauer
spezielle Funktionalität (Methode) der Klasse B

• Wir haben bereits eine Klasse C, die die von IchBrauchB von B
geforderte Funktionalität anbietet

• C bietet die gewünschte Funktionalität unter dem falschen
Methodennamen an, da C Teil einer komplexen Klassenstruktur
ist, kann C nicht verändert werden

Lösung:

• Schreibe Adapterklasse, die sich wie B verhält (von B erbt bzw.
Interface B implementiert) und Objekt der Klasse C aggregiert

• Adapter leitet Aufruf der von IchBrauchB gewünschten
Funktionalität an C weiter

Video

Video

https://youtu.be/lRDBSA12BDE

Prof. Dr.
Stephan Kleuker

285OOAD

Adapter - Lösung

public class Adapter implements B{
 private C c = null;
 ...
 public Adapter(){ this.c = new C();}
 ...
 @Override
 public ... machWasTolles(){
 return this.c.kannWasWasAuchBKoennenSoll();
 }
}

Prof. Dr.
Stephan Kleuker

286OOAD

Fassade nach außen

• Generell sollen Klassen eng zusammen-
hängend sein, z. B. Methoden können nicht auf
mehrere Klassen verteilt werden

• anderen Nutzungen möchte man nur eine
einfache externe Sicht bieten, deshalb liefern
zusammenhängende Klassen häufiger eine
Fassadenklasse („davorgeklatscht“) nach außen

Prof. Dr.
Stephan Kleuker

287OOAD

Einsatzmöglichkeiten von Sichtbarkeiten

• Standard-OO-Programmierung: Exemplarvariablen private [oder
protected], Exemplarmethoden public (analog für Klassenvariablen
und –methoden)

• In Spezialfällen können Sichtbarkeiten geändert werden, Beispiel:

– Im gesamten System gibt es ein Objekt, mit dem die Verbindung
zu anderen Systemen aufgebaut wird

– Wird das Objekt das erste Mal benötigt, wird es erzeugt, bei
weiteren Anfragen werden Referenzen auf dieses identische
Objekt zurück gegeben

• Objekt muss in Klassenvariable gespeichert werden

• Nutzungen dürfen keine Konstruktoren aufrufen, da es sonst
verschiedene Objekte gibt (Konstruktoren werden private)

• Zugriff auf das Objekt über Klassenmethoden

Prof. Dr.
Stephan Kleuker

288OOAD

Singleton (1/3)

public class Singleton {
 private int x = 0;
 private int y = 0;
 private static Singleton pkt = null; //für einziges
 //Exemplar

 private Singleton(int x, int y){
 this.x = x;
 this.y = y;
 }

 public static Singleton getPunkt(){
 if (Singleton.pkt == null) { // ein einziges Mal erzeugen
 Singleton.pkt = new Singleton(6, 42);
 }
 return Singleton.pkt;
 }

Prof. Dr.
Stephan Kleuker

289OOAD

Singleton (2/3)

 @Override
 public Singleton clone(){
 //echtes Kopieren verhindern
 return this;
 }

 public void ausgeben(){
 System.out.print("[" + this.x + "," + this.y + "]");
 }

 public void verschieben(int dx, int dy){
 this.x += dx;
 this.y += dy;
 }
}

Prof. Dr.
Stephan Kleuker

290OOAD

Singleton (3/3)

public class Main {
 public static void main(String[] s){
 Singleton p1 = Singleton.getPunkt();
 Singleton p2 = Singleton.getPunkt();
 // Singleton sing = new Singleton();
 // error: constructor not visible
 p1.ausgeben();
 p2.ausgeben();
 if(p1 == p2) {
 System.out.println("\n identisch");
 }
 p1.verschieben(3, 5);
 p1.ausgeben();
 p2.ausgeben();
 Singleton p3 = p1.clone();
 if(p2 == p3) {
 System.out.println("\n identisch");
 }
 }
}

[6,42][6,42]
identisch
[9,47][9,47]
identisch

Prof. Dr.
Stephan Kleuker

291OOAD

Decorator (1/9)

• gegeben ist eine Klasse mit Methoden; diese gegebenen
Methoden sollen ergänzt/verändert werden

• Beispiel: Protokolliere was wird wann ausgeführt (Logging)

• Ansatz: gegeben einfache Klasse

Video

Video

https://youtu.be/J337cRB5QBU

Prof. Dr.
Stephan Kleuker

292OOAD

Decorator (2/9)

public class Konto {
 private int stand;

 public void einzahlen(int betrag) {
 this.stand += betrag;
 }

 public int getStand() {
 return this.stand;
 }

 public String toString() {
 return "Konto{" + "stand=" + this.stand + '}';
 }
}

Prof. Dr.
Stephan Kleuker

293OOAD

Decorator (3/9)

• ergänze Interface

public interface KontoInterface {

 void einzahlen(int betrag);

 int getStand();

}

public class Konto
implements KontoInterface { …

Prof. Dr.
Stephan Kleuker

294OOAD

Decorator (4/9)

• ergänze neue Klasse (Decorator) die das Interface realisiert und
ein Objekt der Klasse als Exemplarvariable hält

• Idee: delegiere
Aufrufe an diese
Exemplarvariable
und ergänze drum
herum neue
Funktionalität

• flexibler:
Exemplarvariable
nutzt Interface-Typ

Prof. Dr.
Stephan Kleuker

295OOAD

Decorator (5/9)
public class KontoDecorator implements KontoInterface {

 private KontoInterface konto;

 public KontoDecorator(KontoInterface konto){
 this.konto = konto;
 }

 @Override
 public void einzahlen(int betrag) {
 System.out.println("vor einzahlen");
 this.konto.einzahlen(betrag);
 System.out.println("nach einzahlen");
 }

 @Override
 public int getStand() {
 System.out.println("vor getStand");
 int ergebnis = this.konto.getStand();
 System.out.println("nach getStand");
 return ergebnis;
} }

Prof. Dr.
Stephan Kleuker

296OOAD

Decorator (6/9)

public static void main(String[] args) {

 KontoInterface k = new Konto();
 KontoInterface kd = new KontoDecorator(k);
 kd.einzahlen(42);
 System.out.println("Stand: " + kd.getStand());
 System.out.println("Konto: " + k);
 }

vor einzahlen
nach einzahlen
vor getStand
nach getStand
Stand: 42
Konto:
Konto{stand=42}

Prof. Dr.
Stephan Kleuker

297OOAD

Decorator (7/9) – etwas mehr Effekt (1/2)

public class KontoDecorator2 implements KontoInterface{

 private KontoInterface konto;
 private int schutz; // meine Privatgebuehr

 public KontoDecorator2(KontoInterface konto){
 this.konto = konto;
 }

 @Override
 public void einzahlen(int betrag) {
 System.out.println("vor einzahlen");
 this.schutz += 4;
 this.konto.einzahlen(betrag - 4);
 System.out.println("nach einzahlen");
 }

Prof. Dr.
Stephan Kleuker

298OOAD

Decorator (8/9) – etwas mehr Effekt (2/2)

 @Override
 public int getStand() {
 System.out.println("vor getStand");
 int ergebnis = this.konto.getStand();
 System.out.println("nach getStand");
 return ergebnis + this.schutz;
 }

}

Prof. Dr.
Stephan Kleuker

299OOAD

Decorator (9/9) – sind verknüpfbar

public static void main(String[] args) {

 KontoInterface k = new Konto();
 KontoInterface ktmp = new KontoDecorator2(k);
 KontoInterface kd = new KontoDecorator2(ktmp);
 kd.einzahlen(42);
 System.out.println("Stand: " + kd.getStand());
 System.out.println("Konto: " + k);
 } vor einzahlen

vor einzahlen
nach einzahlen
nach einzahlen
vor getStand
vor getStand
nach getStand
nach getStand
Stand: 42
Konto: Konto{stand=34}

Prof. Dr.
Stephan Kleuker

300OOAD

Proxy
Video

Video
• Beim Proxy (oder Stellvertreter)-Pattern wird der Zugriff auf

eine „wertvolle“ Ressource durch eine vorgeschaltete Klasse
gesteuert

• Nutzungen des Proxys nutzen diesen wie die eigentliche Klasse

https://youtu.be/sycH0aSiq84

Prof. Dr.
Stephan Kleuker

301OOAD

Proxy – Implementierungsmöglichkeit (1/3)

public interface KlasseMitWertvollemInhalt {
 public int anfrage(String details);
}

public class RealeKlasse implements
KlasseMitWertvollemInhalt {

 private Verbindung verbindung;

 public RealeKlasse(String verbindungsdaten){
 this.verbindung = new Verbindung(verbindungsdaten);
 }

 @Override
 public int anfrage(String details) {
 return this.verbindung.befragen(details);
 }
}

Prof. Dr.
Stephan Kleuker

302OOAD

public class Proxy implements KlasseMitWertvollemInhalt {

 //hier Variante mit Singleton (gibt Alternativen)
 private static RealeKlasse realesObjekt;

 public Proxy(){
 if(Proxy.realesObjekt == null){
 Proxy.realesObjekt = new RealeKlasse("Spezialinfos");
 }
 }

 public int anfrage(String details) {
 // hier nur Weiterleitung
 // Varianten: Protokollierung, Cache, …
 return Proxy.realesObjekt.anfrage(details);
 }
}

Proxy – Implementierungsmöglichkeit (2/3)

Prof. Dr.
Stephan Kleuker

303OOAD

public class Nutzend {

 public int proxyNutzen(String anfrage){
 KlasseMitWertvollemInhalt k = new Proxy();
 return k.anfrage(anfrage);
 }

 public static void main(String[] s){
 //etwas sinnlos, zu Testzwecken
 Nutzend n = new Nutzend();
 System.out.println(n.proxyNutzen("gib41"));
 }
}

Proxy – Implementierungsmöglichkeit (3/3)

Prof. Dr.
Stephan Kleuker

304OOAD

Proxy, Decorator – Verwandt, aber anderer Einsatz (1/2)

Prof. Dr.
Stephan Kleuker

305OOAD

Proxy, Decorator – Verwandt, aber anderer Einsatz (2/2)

• gemeinsam: Verhalten einer existierenden Klasse wird verändert

• beide sind zur Erweiterung der Funktionalität nutzbar

aber:

• Proxy-Schwerpunkt liegt auf der Kontrolle des Objektzugriffs

• Objekt wird oft im Proxy erzeugt

• Verbindung wird zu Compile-Zeit bereits festgelegt

• Decorator fügt Funktionalität zu existierendem Objekt hinzu

• Objekt wird injiziert (Übergabe Konstruktor oder mit set)

• Verbindung wird erst zur Laufzeit hergestellt

Prof. Dr.
Stephan Kleuker

306OOAD

Strategy - Problem

• Für eine Methode gibt es verschiedene Möglichkeiten sie zu
implementieren

• Die Wahl der Implementierungsart soll leicht verändert werden
können

Einsatzszenarien

• Prototypische Implementierung soll später leicht ausgetauscht
werden können

• Wahl der effizientesten Methode hängt von weiteren
Randbedingungen ab (z. B. suchen / sortieren)

• Ausführungsart der Methode soll zur Laufzeit geändert werden
können (z. B. nutzende Person zahlt für einen Dienst und
bekommt statt Werbe- Detailinformationen)

Prof. Dr.
Stephan Kleuker

307OOAD

Strategy - Lösungsbeispiel

Prof. Dr.
Stephan Kleuker

308OOAD

State-Pattern (eine eigene Variante)

Prof. Dr.
Stephan Kleuker

309OOAD

State-Pattern – Implementierungsauszug (1/3)

public abstract class Zustand {

 protected int x;

 public abstract Zustand setX(int x);
 public abstract String status();
 protected Zustand(int x){
 this.x = x;
 }
}

• Jede zustandsverändernde Methode (hier setX) führt
Änderungen aus und gibt Folgezustand zurück

• Zustand könnte auch veränderbarer Parameter sein

Prof. Dr.
Stephan Kleuker

310OOAD

State-Pattern – Implementierungsauszug (2/3)

public class ZustandOK extends Zustand{

 public ZustandOK(int x) {
 super(x);
 }

 @Override
 public Zustand setX(int x) {
 super.x = x;
 if(x >= 42) {
 return new ZustandKritisch(x);
 }
 return this;
 }

 @Override
 public String status() {return "alles ok";}
}

Prof. Dr.
Stephan Kleuker

311OOAD

State-Pattern – Implementierungsauszug (3/3)

public class Messstation {
 private String standort = "City";
 private Zustand z = new ZustandOK(0);

 public void zustandAendern(int wert){
 this.z = this.z.setX(wert);
 }

 public void ausgeben(){
 System.out.println(this.standort
 + " Zustand: " + this.z.status());
 }
}

Prof. Dr.
Stephan Kleuker

312OOAD

Umsetzung klassischer endlicher Automaten

• Automat mit Startzustand S1, Menge von Endzuständen {S3}
und Eingabezeichen a, b; akzeptiert Sprache aab*

Zustand Zeichen Folge-
zustand

S1 a S2

S1 b S4

S2 a S3

S2 b S4

S3 a S4

S3 b S3

S4 a S4

S4 b S4

public class S3 implements Zustand {

 @Override
 public Zustand a() {
 return new S4();
 }

 @Override
 public Zustand b() {
 return this;
 }

Prof. Dr.
Stephan Kleuker

313OOAD

Command-Pattern

• Problem: unterschiedliche Aktionen werden zentral ausgeführt
und verwaltet

• Ansatz: Stecke detaillierte Ausführung in ein (Command-)
Objekt; diese haben gemeinsames Interface

• Command-Objekte kennen Details der Ausführung

• Steuerung dann einfach änder- und erweiterbar

M M+ M-

7 8 9 +

4 5 6 -

1 2 3

0

• Beispiel: Kleiner Taschenrechner mit +
und – und einem Zwischenspeicher für
einen Wert, der dann aufaddiert oder
subtrahiert werden kann

Video

Video

https://youtu.be/jjgmQUmZSi0

Prof. Dr.
Stephan Kleuker

314OOAD

Bild aus der Literatur

• Command ist abstrakt, zeigt Ausführungsoperation

• ConcreteCommand ist Umsetzung für Receiver

• Receiver führt Operation aus

• Invoker kennt Commands, startet Ausführung

• Client erzeugt ConcreteCommand und setzt Receiver

Prof. Dr.
Stephan Kleuker

315OOAD

Beispiel 1/13 : Rechner 1/2

package business;

public class Rechner {

 private int anzeige;
 private int speicher;

 public int getAnzeige() {
 return this.anzeige;
 }

 public void setAnzeige(int anzeige) {
 this.anzeige = anzeige;
 }

 public int getSpeicher() {
 return this.speicher;
 }

 public void setSpeicher(int speicher) {
 this.speicher = speicher;
 }

Prof. Dr.
Stephan Kleuker

316OOAD

Beispiel 2/13 : Rechner 2/2
public void addieren(int wert) {

 this.anzeige += wert;
 }

 public void subtrahieren(int wert) {
 this.anzeige -= wert;
 }

 public void speichern(){
 this.speicher = this.anzeige;
 }

 public void speicherAddieren(){
 this.anzeige += this.speicher;
 }

 public void speicherSubtrahieren(){
 this.anzeige -= this.speicher;
 }

 @Override
 public String toString(){
 return "Speicher: "+ this.speicher +" Wert: "
 + this.anzeige;
 }
}

Prof. Dr.
Stephan Kleuker

317OOAD

Beispiel 3/13 : Klassischer Dialog 1/2
package io;
import business.Rechner;

public class Dialog {
 private Rechner rechner = new Rechner();

 public void dialog() {
 EinUndAusgabe ea = new EinUndAusgabe();
 int eingabe = -1;
 while (eingabe != 0) {
 System.out.println("(0) Programm beenden\n"
 + "(1) addieren\n" + "(2) subtrahieren\n"
 + "(3) Anzeige in Speicher\n"
 + "(4) Speicher addieren\n"
 + "(5) Speicher subtrahieren");
 eingabe = ea.leseInteger();
 switch (eingabe) {
 case 1: {
 System.out.print("Wert eingeben: ");
 this.rechner.addieren(ea.leseInteger());
 break;
 }

Prof. Dr.
Stephan Kleuker

318OOAD

Beispiel 4/13 : Klassischer Dialog 2/2

case 2: {
 System.out.print("Wert eingeben: ");
 this.rechner.subtrahieren(ea.leseInteger());
 break;
 }
 case 3: {
 this.rechner.speichern();
 break;
 }
 case 4: {
 this.rechner.speicherAddieren();
 break;
 }
 case 5: {
 this.rechner.speicherSubtrahieren();
 break;
 }
 }
 System.out.println(this.rechner);
 }
}

Prof. Dr.
Stephan Kleuker

319OOAD

Beispiel 5/13 : Funktioniert immerhin

(0) Programm beenden

(1) addieren

(2) subtrahieren

(3) Anzeige in Speicher

(4) Speicher addieren

(5) Speicher subtrahieren

1

Wert eingeben: 43

Speicher: 0 Wert: 43

(2) subtrahieren

2

Wert eingeben: 1

Speicher: 0 Wert: 42

(3) Anzeige in Speicher

3

Speicher: 42 Wert: 42

(4) Speicher addieren

4

Speicher: 42 Wert: 84

(5) Speicher subtrahieren

5

Speicher: 42 Wert: 42

(0) Programm beenden

0

Speicher: 42 Wert: 42

Prof. Dr.
Stephan Kleuker

320OOAD

Beispiel 6/13 : Ansatz: Steuerungsklassen

Prof. Dr.
Stephan Kleuker

321OOAD

Beispiel 7/13 : Pattern-Nutzung

Prof. Dr.
Stephan Kleuker

322OOAD

Beispiel 8/13 : Umsetzung 1/3
package io.commands;
public interface Command {
 public void execute();
}

package io.commands;

import main.EinUndAusgabe;
import business.Rechner;

public class Addieren implements Command {
 private Rechner rechner;

 public Addieren(Rechner rechner){
 this.rechner = rechner;
 }

 @Override
 public void execute() {
 System.out.print("Wert eingeben: ");
 this.rechner.addieren(new EinUndAusgabe().leseInt());
 }

 @Override
 public String toString(){return "addieren";}
}

typischerweise werden
Zusatzinformationen

benötigt

eigentliche
Ausführung

Prof. Dr.
Stephan Kleuker

323OOAD

Beispiel 9/13 : Umsetzung 2/3 (Varianten -> Praktikum)

package main;

import java.util.HashMap;

import java.util.Map;

import business.Rechner;

public class Dialog {

 private Rechner rechner = new Rechner();

 private Map<Integer,Command> aktionen = new HashMap<>();

 public Dialog(){

 this.aktionen.put(1, new Addieren(this.rechner));

 this.aktionen.put(2, new Subtrahieren(this.rechner));

 this.aktionen.put(3, new AnzeigeSpeichern(this.rechner));

 this.aktionen.put(4, new SpeicherAddieren(this.rechner));

 this.aktionen.put(5

 , new SpeicherSubtrahieren(this.rechner));

 }

Prof. Dr.
Stephan Kleuker

324OOAD

Beispiel 10/13 : Umsetzung 3/3

public void dialog() {

 EinUndAusgabe ea = new EinUndAusgabe();

 int eingabe = -1;

 while (eingabe != 0) {

 System.out.println("(0) Programm beenden");

 for(int tmp:this.aktionen.keySet()){

 System.out.println("(" + tmp + ") "

 + this.aktionen.get(tmp));

 }

 eingabe = ea.leseInteger();

 Command com = this.aktionen.get(eingabe);

 if(com != null){

 com.execute();

 }

 System.out.println(this.rechner);

 }

 }

Prof. Dr.
Stephan Kleuker

325OOAD

Beispiel 11/13 : Undo

• Command-Pattern eignet sich sehr gut, Aktionen wieder
rückgängig zu machen

• es müssen alle Änderungen der Aktion bekannt und reversibel
sein

• gibt verschiedene Varianten

– Ansatz 1: jedes Command-Objekt hat undo-Methode und
wird gespeichert [nächste Folien]

– Ansatz 2: es gibt eigenes Undo-Command-Objekt als
Ergebnis von execute()

– Ansatz 3: Undo- und Command-Objekte haben keine
gemeinsame Klasse / Interface

– …

Prof. Dr.
Stephan Kleuker

326OOAD

Beispiel 12/13 : Variante Undo-Methode

Prof. Dr.
Stephan Kleuker

327OOAD

Beispiel 13/13 : Variante Undo-Objekte (Skizze)

Prof. Dr.
Stephan Kleuker

328OOAD

Fazit Command-Pattern

• generell oft bei Steuerungen einsetzbar

• oft gut für Undo- und Redo geeignet

• meist individuelle Varianten des Patterns sinnvoll

• (in UML-Diagrammen oft zusätzliche Klasse, die auf Command
zugreifen kann)

• Command-Klassen müssen einfach an benötigte Informationen
kommen können; wird dies kompliziert, ist der Pattern-Einsatz
nicht sinnvoll

Prof. Dr.
Stephan Kleuker

329OOAD

Visitor Pattern (1/5) - Idee

• Es gibt eine zentrale Aufgabe zur Verarbeitung mehrerer
Objekte unterschiedlicher Klassen

• Diese Klassen anzupassen ist aufwändig, Gefahr von Copy &
Paste

• Verarbeitung soll an einer Stelle passieren, um Synergien zu
nutzen und leicht auf Änderungen reagieren zu können

• Beispiel: In einer Reiseverwaltung werden Reisen aus
unterschiedlichen Bausteinen, wie Hotel- und Mietwagen-
Reservierungen zusammengestellt, für alle Fach-Entitäten soll
es Umwandlungsmöglichkeiten nach XML und JSON geben

Video

Video

https://youtu.be/uQZGQBON6VE

Prof. Dr.
Stephan Kleuker

330OOAD

Visitor Pattern (2/5) - Ansatz

• Neues Interface für Zugriff eines
Visitors

• In der Methode wird visit()-
Methode des Visitors mit
Parameter this aufgerufen

• Visitor kann damit auf besuchtes
Objekt zugreifen

• Hinweis: Rückgabeparameter
weggelassen, sind
aufgabenindividuell zu
definieren (cast bei Object
notwendig)

Prof. Dr.
Stephan Kleuker

331OOAD

Visitor Pattern (3/5) - Umsetzung

• Statische Polymorphie, für jede besuchte Klasse eigene
Methode (mit eigener Rückgabe)

Prof. Dr.
Stephan Kleuker

332OOAD

Visitor Pattern (4/5) - Nutzung
for(Basis b:bas) {

 System.out.println(b.accept(vis));

 }

Prof. Dr.
Stephan Kleuker

333OOAD

Visitor Pattern (5/5) - Diskussion

• Wesentlicher Vorteil: fachliche
Funktionalität zu bestimmten Themen
kompakt in konkreten Visitor-
Realisierungen gebündelt (-> einfach
Wart- und Erweiterbarkeit)

• Alternativ: Direkte Nutzung eines
Interfaces, Berechnungen in jeder
Klasse notwendig (weniger Klassen,
schwerer wartbar)

• Alternative abhängig von Komplexität
und Wahrscheinlichkeit einer
Änderung wählbar

• Visitor ermöglicht Klassen zu ergänzen
ohne deren Code anzufassen

Prof. Dr.
Stephan Kleuker

334OOAD

Verantwortlichkeitsmuster – GRASP-Pattern

• Expertenmuster

• Creator

• Low coupling

• High cohesion

• Don‘t talk to strangers

• Kunstgebilde

• Command Query Separation

GRASP (General Responsibility Assignment Software Patterns)
nach C. Larman

(Folien basierend auf Prof. T. Gervens)

Video

Video

https://youtu.be/8lfuDS7gLyw

Prof. Dr.
Stephan Kleuker

335OOAD

Muster: Experte

Name: Expert(e)

Regel:

 Man übertrage eine gegebene Aufgabe bzw. eine
Verantwortlichkeit auf diejenige Klasse, die das notwendige
Wissen besitzt!

Hintergrund: Man hat:

– einerseits eine Vielzahl von Klassen (aus der Analyse oder
vorherigen Gestaltungschritte)

– und andererseits eine Vielzahl zu vergebender Aufgaben
und Verantwortlichkeiten

Prof. Dr.
Stephan Kleuker

336OOAD

Beispiel: Expert (Fachwissen)

• Frage: Wer berechnet die Zinsen?
• Mögliche Antworten:

– Objekt der Klasse Girokonto, denn es kennt den
Betrag und die Laufzeit

– die Bank, denn sie kennt den Zinssatz
• vorzuziehen: Die erste Möglichkeit, denn Girokonto

besitzt mehr notwendiges Wissen und erhält Ergebnis
• Bemerkung:

– Fachwissen ist teilweise über mehrere Klassen
verteilt, man muss entscheiden, wer die größte
Expertise ist

– Alle Objekte können aktiv werden (anders als bei
vielen realen Objekten)

Girokonto

-betrag

-laufzeit

Bank

-zinssatz

*

Buchend

-name

*

Prof. Dr.
Stephan Kleuker

337OOAD

Muster: Creator

Name: Creator

Regel: Gegeben sei eine Klasse A. Die Aufgabe, Objekte dieser
Klasse zu erzeugen (Konstruktoraufrufe), soll an eine Klasse
übergeben werden, die

– ein Aggregat von A-Objekten ist

– zu A-Objekten in enger Beziehung steht

– das notwendige Wissen (Initialisierungsdaten) besitzt, um A-
Objekte zu erzeugen

Hintergrund:

• Die Objektwelt ist dynamisch, ständig entstehen neue Objekte.

Objekterzeugung ist daher eine wichtige Aufgabe; die

Zuständigkeit dafür sollte sorgfältig vergeben werden

Prof. Dr.
Stephan Kleuker

338OOAD

Beispiel: Creator (1/2)

Wer legt wen an? Zum Beispiel:

Klausur : angelegt durch Klausurliste
Teilnahmeeintrag : angelegt durch Klausur

Teilnahmeeintrag

Prof. Dr.
Stephan Kleuker

339OOAD

Beispiel: Creator (2/2)

Kommunikationsdiagramm: (ausdrucksstark wie einfaches
Sequenzdiagramm)

1. richteKlausurEin(…)

2. anmelden(…)

:Prüfungsamt

:Klausur

1.1.1 new Klausur(…)

2.1.1 macheEintrag(…)

:Teilnahmeeintrag

2.1.1.1.1

newTeilnahmeeintrag(…)

:Klausurliste

1.1 erstelleKlausur(…)

2.1 melden(…)

Prof. Dr.
Stephan Kleuker

340OOAD

Muster: Geringe Kopplung

Name: “geringe Verbindung” bzw. “low coupling”

Regel: Aufgaben unter den Klassen so verteilen, dass die
Abhängigkeiten unter den Klassen möglichst gering sind!

Hintergrund: Klassen sollten möglichst isoliert sein, denn dadurch
werden

– Entwicklung (einschließlich Test)

– Verständnis

– Wiederverwendbarkeit

 der Klassen erleichtert

Prof. Dr.
Stephan Kleuker

341OOAD

Beispiel: Geringe Kopplung (1/2)

• Aufgabe: Es soll die Note eines Klausurteilnehmers ermittelt
werden. Eine Lösung als Kommunikationsdiagramm könnte
sein:

1. note=ermittleNote(studium,sem

,modul,matrnr)

e:Teilnahmeeintrag k:Klausur

1.2. e=liefereEintrag(matnr)

1.3. note=getNote()

Schlecht!

:Klausurliste
1.1. k=liefereKlausur(modul)

:Prüfungsamt

Prof. Dr.
Stephan Kleuker

342OOAD

Beispiel: Geringe Kopplung (2/2)

Besser:
• keine Abhängigkeit zwischen Prüfungsamt und Klausur
• Prüfungsamt benötigt kein Wissen über Organisation von Klausur
• entspricht auch dem “Experten-Muster”

1. note=ermittleNote(studium

,sem,modul,matrnr)
:Prüfungsamt

k:Klausur

1.1.2. note=sagNote(matrnr)

1.1.2.2. note=getNote()

:Klausurliste

1.1. note=ermittleNote(modul,matnr)

1.1.2.1.e=findeTE(matrnr)

1.1.1.

k=findeKlausur(modul)

e:Teilnahmeeintrag

Prof. Dr.
Stephan Kleuker

343OOAD

Muster: hoher Zusammenhalt

Name: “hoher (funktionaler) Zusammenhalt” bzw. “high cohesion”

Regel: Die Verantwortungen, die einer Klasse übertragen werden,
sollten

• ähnlich oder

• zueinander verwandt sein

Hintergrund: Klassen, die unterschiedlichste Aufgaben erfüllen, sind
schwierig

• zu verstehen

• zu warten

• wiederzuverwenden

Prof. Dr.
Stephan Kleuker

344OOAD

Beispiel: hoher Zusammenhalt

• Die Klasse Klausur enthält die Methoden

– anzahlTeilnehmende()

– notendurchschnitt()

– standardabweichung()

– getDozierend()

etc., aber z.B. nicht Methoden wie

– setDozierendname()

– gibMatrikelnummer(String name)

Dozierend

Prüfungsamt

Klausur

*

1

*

*

Klausurliste

Klausur

anzahlTeilnehmende():int

notendurchschnitt():double

Standardabweichung():double

drucken():String

getDozierend():String

Prof. Dr.
Stephan Kleuker

345OOAD

Muster: Don’t Talk to Strangers

Name: “Don’t talk to strangers“

Hintergrund: Ein Klient habe eine Assoziation zu einem (direkten)
Objekt. Dieses wiederum habe eine Assoziation zu einem
anderen (für den Klienten indirekten) Objekt.

Regel: Dann sollte das direkte Objekt die Zuständigkeit erhalten,
mit dem indirekten Objekt zu kommunizieren (und nicht der
Klient), so dass der Klient nichts über das indirekte Objekt
wissen muss.

Prof. Dr.
Stephan Kleuker

346OOAD

Konkretisierung: Don’t Talk to Strangers

• Dieses Muster definiert Randbedingungen, zu welchen anderen
Objekten Nachrichten geschickt oder nicht geschickt werden
sollten.

• Erlaubte Nachrichten:
– Zu dem this Objekt (oder self)
– Einer Exemplarvariablen von this
– Einem Objekt, das Parameter einer Methode ist
– Einem Element einer Collection (Container) , welche

Exemplarvariable von this ist
– Einem Objekt, das innerhalb einer Methode erzeugt wurde

• Nicht erlaubt z.B.:
– Ein Objekt soll niemals eine Nachricht zu einem Objekt

senden, dessen Adresse es als Rückgabewert eines
Methodenaufruf mit einem dritten Objekt erhalten hat

Prof. Dr.
Stephan Kleuker

347OOAD

Muster: Reines Kunstgebilde

Name: “Reines Kunstgebilde” bzw. “pure fabrication”

Regel: Falls man einer Klasse aufgrund

– natürlicher Gegebenheiten bzw.

– anderer logischer Gegebenheiten

 bestimmte Aufgaben übertragen will und dadurch das Muster
“hoher Zusammenhalt” verletzt wird, so sollte man einige
Aufgaben in eine eigene Kunstklasse auslagern

• Hintergrund: Dieses dient zur Auflösung eines Konfliktes
zwischen

– natürlicher Modellierung und

– “hohem Zusammenhalt”

Prof. Dr.
Stephan Kleuker

348OOAD

Beispiel: Reines Kunstgebilde

Buchend
Kredit-

würdigkeit
Bank

* 0..111

Ein “reines Kunstprodukt”, dieses
vollzieht komplexe Aufgaben
(Prüfungen, Schufa-Abfrage usw.)

Prüfungsamt Klausur
1

*Klausurliste

Klausur

bewertung

Bewertung der Klausur

für Studierende, Methoden über alle
Ergebnisse, wie Test auf Normalverteilung…

Prof. Dr.
Stephan Kleuker

349OOAD

Muster: Command-Query Separation
Name: “Ausführung-Abfrage Trennung” bzw. “Command-Query

Separation (CQS)”

Regel: Die Methode einer Klasse soll eine der Funktionen
– Ausführen einer Aktion mit der Nebenwirkung, dass Objekt-/

Klassenvariablen verändert werden (möglichst vom Typ void)
– Ausführen einer Anfrage, um Daten ohne Nebenwirkung

zurückzugeben
erfüllen, aber auf keinen Fall beides tun.
„Das Stellen einer Frage sollte nicht die Antwort beeinflussen.“

Hintergrund: Die Schnittstelle einer Klasse sollte möglichst
übersichtlich und verständlich sein. Insbesondere muss transparent
sein, wie Objekt- und Klassenvariablen verändert werden.

Prof. Dr.
Stephan Kleuker

350OOAD

Beispiel: Command-Query Separation

Beispiel 1: Inkrement

private int x;

public int nextX() {

this.x = this.x + 1;

return this.x;

} //Schlecht!

private int x;

public int getX() {

return this.x; }

public void incrementX() {

this.x = this.x + 1; } //gut!

Beispiel 2: Monopoly Würfel

private int wert;

public int werfen() {

this.wert=(int)(Math

 .random()*6) + 1;

return this.wert;

} //Schlecht!

private int wert;

public void werfen() {

 this.wert=(int)(Math.random()*6)

 + 1;

}

public int getWert(){

return this.wert; } //gut!

Prof. Dr.
Stephan Kleuker

351OOAD

• immer sinnvolle Rückgabe nutzen; wenn wählbar wird statt
void Objekt selbst zurück gegeben (this)

• Variante: Rückgabe eines Objekts gleichen Typs; nutzt z. B.
Referenzen des Ursprungsobjektes

• verstößt klar gegen Command-Query Separation

• Beispiel Integer-Menge
public class Main {

 public static void main(String[] args) {

 IntMenge tmp = new IntMenge();

 tmp = tmp.hinzu(1, 21, 11, 41, 31, 1)

 .kleinerAls(41)

 .groesserAls(11);

 System.out.println(tmp);

 }

}

Method Chaining (1/3)

[21, 31]

Prof. Dr.
Stephan Kleuker

352OOAD

Method Chaining (2/3)
public class IntMenge {

 private Set<Integer> menge = new HashSet<>();

 public IntMenge(){ }

 public IntMenge hinzu(int... wert){
 for(int w:wert){
 this.menge.add(w);
 }
 return this; // hier sieht man Chaining
 }

 public IntMenge kleinerAls(int grenze){
 IntMenge ergebnis = new IntMenge();
 for(int w:this.menge){
 if(w < grenze){
 ergebnis.hinzu(w);
 }
 }
 return ergebnis;
 }

Prof. Dr.
Stephan Kleuker

353OOAD

Method Chaining (3/3)

 public IntMenge groesserAls(int grenze){
 IntMenge ergebnis = new IntMenge();
 for(int w: this.menge){
 if(w > grenze){
 ergebnis.hinzu(w);
 }
 }
 return ergebnis;
 }

 public boolean beinhaltet(int wert){
 return this.menge.contains(wert);
 }

 @Override
 public String toString(){
 return this.menge.toString();
 }

}

Prof. Dr.
Stephan Kleuker

354OOAD

Beispiel: Hilfsklasse Objekterzeugung (1/4)

• Beispielnutzung

Mitarbeitend tmp = MitarbeitendBuilder
 .createBuilder()
 .vorname("Murat")
 .nachname("Meier")
 .addFachgebiet(Fachgebiet.C)
 .addFachgebiet(Fachgebiet.JAVA)
 .build();

• generell zur Erzeugung von Objekten nutzbar

• durch Fluent-Programming (Method Chaining) besser lesbar

• Methoden einfach ergänzbar

Prof. Dr.
Stephan Kleuker

355OOAD

Beispiel: Hilfsklasse Objekterzeugung (2/4)

Prof. Dr.
Stephan Kleuker

356OOAD

Beispiel: Hilfsklasse Objekterzeugung (3/4)
public class MitarbeitendBuilder {

 private int id;
 private String vorname = "Eva"; //Default-Wert
 private String nachname = "Mustermann";
 private Set<Fachgebiet> fachgebiete = new HashSet<>();

 public MitarbeitendBuilder() {}

 public static MitarbeitendBuilder createBuilder(){
 return new MitarbeitendBuilder();
 }

 public MitarbeitendBuilder vorname(String vorname) {
 this.vorname = vorname;
 return this;
 }

 public MitarbeitendBuilder nachname(String nachname) {
 this.nachname = nachname;
 return this;
 }

Prof. Dr.
Stephan Kleuker

357OOAD

Beispiel: Hilfsklasse Objekterzeugung (4/4)

public MitarbeitendBuilder id(int id){
 this.id = id;
 return this;
 }

 public MitarbeitendBuilder addFachgebiet(Fachgebiet f){
 this.fachgebiete.add(f);
 return this;
 }

 public Mitarbeitend build() {
 Mitarbeitend erg = new Mitarbeitend();
 erg.setId(this.id);
 erg.setVorname(this.vorname);
 erg.setNachname(this.nachname);
 erg.setFachgebiete(this.fachgebiete);
 return erg;
 }
}

Prof. Dr.
Stephan Kleuker

358OOAD

Erinnerung: clone(), Erzeugung echter Kopien (1/4)

• Java arbeitete mit Referenzen, Default-Implementierung von
clone() liefert nur flache Kopien

• Interface Cloneable implementieren und clone() überschreiben

• Erinnerung: Strings sind immutable (immer neues Objekt)

Video

Video

https://youtu.be/-iqOX1c_U6g

Prof. Dr.
Stephan Kleuker

359OOAD

Erinnerung: clone(), Erzeugung echter Kopien (2/4)

• in Linie:
 public Linie flacheKopie(){
 return new Linie(this.start, this.ende);
 }

 public static void main(String[] args) {
 Linie l1 = new Linie(new Punkt(1,2), new Punkt(3,4));
 System.out.println(l1);
 Linie l2 = l1.flacheKopie();
 System.out.println("l1 == l2 : " + (l1 == l2));
 l2.getStart().setX(42);
 System.out.println(l1);
 System.out.println(l2);
 } Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}

l1 == l2 : false
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}

Prof. Dr.
Stephan Kleuker

360OOAD

Erinnerung: clone(), Erzeugung echter Kopien (3/4)

• in Punkt:
public class Punkt implements Cloneable{ …

 @Override
 public Punkt clone() { // darf Punkt statt Object stehen
 return new Punkt(this.x, this.y);
 }

• in Linie:
public class Linie implements Cloneable{ …

 @Override
 public Linie clone() {
 return new Linie(this.start.clone(), this.ende.clone());
 }

Prof. Dr.
Stephan Kleuker

361OOAD

Erinnerung: clone(), Erzeugung echter Kopien (4/4)

Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
l1 == l2 : false
Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}

public static void main(String[] args) {
 Linie l1 = new Linie(new Punkt(1,2), new Punkt(3,4));
 System.out.println(l1);
 Linie l2 = l1.clone();
 System.out.println("l1 == l2 : " + (l1 == l2));
 l2.getStart().setX(42);
 System.out.println(l1);
 System.out.println(l2);
 }

• Erinnerung an Praktikumsaufgabe: Ansatz funktioniert nur, wenn
keine identischen Objektreferenzen mehrfach im zu clonenden
Objekt enthalten

Prof. Dr.
Stephan Kleuker

362OOAD

Kombination von Pattern: Beispiel Redux

• Objekte arbeiten typischerweise mit Referenzen (Zeigern) zur
Verknüpfung von Objekten, das ist schnell, kann aber undurchsichtig
werden

• Beispiel: Oberflächen, mit denen verschiedene Objekte der
Geschäftsebene bearbeitet werden

• Ansatz: zentraler State, der alle relevanten Informationen hält

• Ansatz: Veränderung des States nur über zentralen Store

• Ansatz: es entstehen bei Aktionen immer neue State-Objekte

• ursprünglich für JavaScript entwickelt (basierend auf Flux)

• Ansatz auch Grundlage von Reactive Programming

• Folien motiviert durch: https://www.lestard.eu/2018/implement-your-own-

redux-in-java/

Skizze 0

Skizze 0
Skizze 1

Skizze 1
Skizze 2

Skizze 2
Skizze 3

Skizze 3
Skizze 4

Skizze 4

https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://youtu.be/sDMPcTh5aa8
https://youtu.be/AcrXcnNCMMU
https://youtu.be/H_AMc-NwzY4
https://youtu.be/j3TNIPM9ONI
https://youtu.be/iETttIjEoVg

Prof. Dr.
Stephan Kleuker

363OOAD

Redux – Konzept Version 0 (1/2)

• Nutzung („App“) erzeugt Action-Objekt a, beinhaltet, was gemacht
werden soll

• Nutzung ruft dispatch beim Store mit Action a auf

• Store ruft Reducer mit noch aktuellem State currentState (old) und
Action a auf

• Reducer berechnet neuen State neu aus currentState (old) und a

• Store: currentState = neu

8.4

Prof. Dr.
Stephan Kleuker

364OOAD

Redux – Konzept Version 0 (2/2)

Prof. Dr.
Stephan Kleuker

365OOAD

Redux – Konzept Version 1 (1/12)

• offen, wie bekommen Interessierte, z. B. GUI-Komponenten
Änderungen mit (Rückgabe neuen Zustands wäre denkbar)

• Lösung: Store bietet Observer-Observable-Lösung; d. h. Interessierte
an (ggfls. bestimmten) Zustandsänderungen können sich anmelden
(hier fasst Store konkreten und abstrakten Observable zusammen)

Video

Video

https://youtu.be/_D7XSzoMuuc

Prof. Dr.
Stephan Kleuker

366OOAD

Redux – Konzept Version 1 (2/12)

Prof. Dr.
Stephan Kleuker

367OOAD

Redux – Konzept Version 1 (3/12)

• Beispiel: Bearbeitung einer Taskliste

• „App“ und „Interessent“ sind Konsole (TextIO)

• Fachklassen sehen wie folgt aus: (entspricht „details“)

• Businessklassen befinden sich im (oder „hinter“ dem) State

• State kann auch als Model angesehen werden

Prof. Dr.
Stephan Kleuker

368OOAD

Redux – Konzept Version 1 (4/12)

public class Action {
 // generell sollte auf String-Parameter, die auch andere
 // Werte kodieren sollen, aus Typsicherheitsgruenden
 // verzichtet werden
 private List<String> parameter;

 public Action(List<String> parameter) {
 this.parameter = parameter;
 }

 public Action(String... par1){
 this(Arrays.asList(par1));
 }

 public List<String> getParameter() {

 return this.parameter;

 }

}

Prof. Dr.
Stephan Kleuker

369OOAD

Redux – Konzept Version 1 (5/12) – App (1/2)
public class TextIO {

 private Store store = new Store(new State(), new Reducer());

 public TextIO() {
 this.store.subscribe(new Subscriber(){
 @Override
 public void onChange(State s){
 System.out.println(s.getTaskList());
 } });
 }

 public void dialog() {
 int eingabe = -1;
 while (eingabe != 0) {
 System.out.print(""
 + "(0) beenden\n"
 + "(1) Task hinzu\n"
);
 eingabe = Eingabe.leseInt();
 // naechste Folie

Prof. Dr.
Stephan Kleuker

370OOAD

Redux – Konzept Version 1 (6/12) – App (2/2)
switch (eingabe) {

 case 1: {
 this.newTask();
 break;
 }
 }
 }
 }

 private void newTask() {
 System.out.print("neue Aufgabe: ");
 String text = Eingabe.leseString();
 System.out.print("Bearbeitende Person: ");
 String responsible = Eingabe.leseString();
 Action action = new Action(text, responsible);
 this.store.dispatch(action);
 }
}

Prof. Dr.
Stephan Kleuker

371OOAD

Redux – Konzept Version 1 (7/12)

public class Store {

 private State currentState;
 private Reducer reducer;
 private List<Subscriber> subscribers = new ArrayList<>();

 public Store(State initialState, Reducer reducer) {
 this.currentState = initialState;
 this.reducer = reducer;
 }

 public State getState() {
 return this.currentState;
 }

 public void dispatch(Action action) {
 this.currentState = this.reducer.reduce(this.currentState
 , action);
 this.notifySubscribers();
 }

Prof. Dr.
Stephan Kleuker

372OOAD

Redux – Konzept Version 1 (8/12)

private void notifySubscribers() {
for (Subscriber s: this.subscribers){

s.onChange(this.currentState.clone());
}

 }

 public void subscribe(Subscriber subscriber) {
 this.subscribers.add(subscriber);
 subscriber.onChange(this.currentState.clone());
 }
}

public interface Subscriber {
void onChange(State state);

}

Prof. Dr.
Stephan Kleuker

373OOAD

Redux – Konzept Version 1 (9/12)

public class State implements Cloneable{

 private TaskList taskList;

 public State(){
 this.taskList = new TaskList();
 }

 private State(TaskList taskList) {
 this.taskList = taskList;
 }

 public TaskList getTaskList() {
 return this.taskList;
 }

Prof. Dr.
Stephan Kleuker

374OOAD

Redux – Konzept Version 1 (10/12)

 public void add(String text, String responsible){
 this.taskList.add(text, responsible);
 }

 @Override
 public State clone() {// nur fuer interne Tests, sonst clone()
 State result = new State(this.taskList.clone());
 return result;
 }
}

Prof. Dr.
Stephan Kleuker

375OOAD

Redux – Konzept Version 1 (11/12)

public class Reducer {

 public State reduce(State state, Action action) {
 if(action.getParameter().size() < 2){
 throw new IllegalArgumentException(
 "Hinzufuegen benoetigt zwei Parameter");
 }
 state.add(action.getParameter().get(0),
 action.getParameter().get(1));
 return state.clone();
 }
}

Prof. Dr.
Stephan Kleuker

376OOAD

Redux – Konzept Version 1 (12/12)

(0) beenden
(1) Task hinzu
1
neue Aufgabe: Redux lernen
Bearbeitende Person: ich
Task{id=1, text=Redux lernen, responsible=ich, finished=false}

(0) beenden
(1) Task hinzu
1
neue Aufgabe: Redux coden
Bearbeitende Person: mein Kumpel
Task{id=1, text=Redux lernen, responsible=ich, finished=false}
Task{id=4, text=Redux coden, responsible=mein Kumpel,

finished=false}

Prof. Dr.
Stephan Kleuker

377OOAD

Redux – Konzept Version 2 (1/11)

Flexibilisierung des Ansatzes

• mehr Actions: Beispiel
Delete-Operation

• ursprüngliche Action wird zur
AddAction

• Interface oder abstrakte
Klasse für Gemeinsamkeit

• offen: sinnvoller Umgang mit
Parametern (Strings immer
nutzbar, fast immer schwach)

• hier: individuelle Parameter

Video

Video

https://youtu.be/KkyLfsaReZQ

Prof. Dr.
Stephan Kleuker

378OOAD

Redux – Konzept Version 2 (2/11)

public class DeleteAction extends Action{
 private int deleteId;

 public DeleteAction(int id){
 this.deleteId = id;
 }

 public int getDeleteId() {
 return deleteId;
 }

 @Override
 public String toString() {
 return "DeleteAction{" + "deleteId=" + deleteId + '}';
 }
}

Prof. Dr.
Stephan Kleuker

379OOAD

Redux – Konzept Version 2 (3/11)

• in TextIO
…

case 2: {
this.deleteTask();
break;

}
…

 private void deleteTask() {
 System.out.print("welche Id: ");
 int id = Eingabe.leseInt();
 Action action = new DeleteAction(id);
 this.store.dispatch(action);
 }

Prof. Dr.
Stephan Kleuker

380OOAD

Redux – Konzept Version 2 (4/11)
public class Reducer {

 public State reduce(State state, Action action) {
 this.reduceIntern(state, action);
 return state.clone();
 }

 private void reduceIntern(State state, Action action) {
 if (action instanceof AddAction) {
 state.add(action.getParameter().get(0),
 action.getParameter().get(1));
 return; // Alternative für jede Action
 }
 if (action instanceof DeleteAction) {
 state.delete(((DeleteAction) action).getDeleteId());
 return; // State bekommt delete(int)-Methode
 }

 throw new IllegalArgumentException(
 "Action " + action + " nicht unterstuetzt");
 }
}

Prof. Dr.
Stephan Kleuker

381OOAD

Redux – Konzept Version 2 (5/11)

Flexibilisierung des Ansatzes
• Store-Varianten, die zusätzliche Aufgaben übernehmen
• Beispiel: Messe Zeit der Methodenausführung
• Ansatz: Decorator-Pattern, so Store-Varianten verknüpfbar

Prof. Dr.
Stephan Kleuker

382OOAD

Redux – Konzept Version 2 (6/11)

public interface StoreInterface {

 public void dispatch(Action action);
 public State getState(); // !!!! (1)
 public void subscribe(Subscriber subscriber);
 public void notifySubscribers();

}

• ursprüngliche Store-Klasse bleibt erhalten, realisiert Interface

• (1) getState()-Methode darf nur zum Testen genutzt werden,
nur weil jemand Store kennt, ist der Aufruf noch lange nicht
erlaubt

• (1) falls getState() für alle nutzbar sein soll, muss der State bei
Rückgabe gecloned werden [macht Testen schwieriger]

Prof. Dr.
Stephan Kleuker

383OOAD

Redux – Konzept Version 2 (7/11)

public abstract class AbstractDecoratorStore

 implements StoreInterface {

 protected StoreInterface store;

 public AbstractDecoratorStore(StoreInterface store) {

 this.store = Objects.requireNonNull(store);

 }

 @Override

 public State getState() { // nur fuer Testzwecke

 return this.store.getState();

 }

Prof. Dr.
Stephan Kleuker

384OOAD

Redux – Konzept Version 2 (8/11)

@Override

 public void dispatch(Action action) {

 this.store.dispatch(action);

 }

 @Override

 public void notifySubscribers() {

 this.store.notifySubscribers();

 }

 @Override

 public void subscribe(Subscriber subscriber) {

 this.store.subscribe(subscriber);

 }

}

Prof. Dr.
Stephan Kleuker

385OOAD

Redux – Konzept Version 2 (9/11)

public class TimerStore extends AbstractDecoratorStore {

 private long start;

 public TimerStore(StoreInterface store) {

 super(store);

 }

 @Override

 public void dispatch(Action action) {

 start = System.nanoTime();

 super.store.dispatch(action);

 System.out.println("Dauer von " + action

 + ": " + (System.nanoTime() - start));

 }

}

Prof. Dr.
Stephan Kleuker

386OOAD

Redux – Konzept Version 2 (10/11)

• Nutzung in TextIO
private StoreInterface store = new TimerStore(

new Store(new State(), new Reducer())
);

(0) beenden
(1) Task hinzu
(2) Task loeschen
1
neue Aufgabe: Flexibilisieren
Bearbeitende Person: ich
Task{id=1, text=Flexibilisieren, responsible=ich, finished=false}

Dauer von AddAction{parameter=[Flexibilisieren, ich]}: 8505520
(0) beenden
(1) Task hinzu
(2) Task loeschen

Prof. Dr.
Stephan Kleuker

387OOAD

Redux – Konzept Version 2 (11/11)

Prof. Dr.
Stephan Kleuker

388OOAD

Redux – Konzept Version 3 (1/4)

Systematisierung: Erzeugung von
Actions bündeln

• hier korrekte Form garantieren

• konkrete Factory

• Aufzählungswert pro Action-
Art ist Möglichkeit, geht auch
mit int-Parameter

Video

Video

https://youtu.be/dhq36cjmBRI

Prof. Dr.
Stephan Kleuker

389OOAD

Redux – Konzept Version 3 (2/4)
public class ActionFactory {

 // auch mehrere create-Methoden denkbar
 public static Action create(Art command, Object... value) {
 try {
 switch (command) {
 case ADD:
 List<String> tmp = new ArrayList<>();
 for(Object o:value){tmp.add(o.toString());}
 if (tmp.size() < 2) {
 throw new IllegalArgumentException(
 "Hinzufuegen benoetigt zwei Parameter");
 }
 return new AddAction(tmp);
 case DELETE:
 if (value.length == 0) {
 throw new IllegalArgumentException(
 "DELETE benoetigt Parameter");
 }
 return new DeleteAction((Integer) value[0]);

Prof. Dr.
Stephan Kleuker

390OOAD

Redux – Konzept Version 3 (3/4)

 default:
 throw new IllegalArgumentException("Action("
 + command + "," + Arrays.asList(value)
 + ") existiert nicht");
 }
 } catch (ClassCastException e) {
 throw new IllegalArgumentException("Action("
 + command + "," + Arrays.asList(value)
 + ") hat falschen Parametertyp :" + e);
 }
 }
}

Prof. Dr.
Stephan Kleuker

391OOAD

Redux – Konzept Version 3 (4/4)

• in TextIO:
 private void deleteTask() {
 System.out.print("welche Id: ");
 int id = Eingabe.leseInt();
 Action action = ActionFactory.create(Art.DELETE, id);
 this.store.dispatch(action);
 }

 private void newTask() {
 System.out.print("neue Aufgabe: ");
 String text = Eingabe.leseString();
 System.out.print("Bearbeitende Person: ");
 String responsible = Eingabe.leseString();
 Action action = ActionFactory.create(Art.ADD
 , text, responsible);
 this.store.dispatch(action);
 }

Prof. Dr.
Stephan Kleuker

392OOAD

Redux – Fazit

• für kleine Beispiele recht aufwändig

• sehr leicht erweiterbar, gibt feste Stellen an denen ergänzt wird

• Funktionalität aber auf einige Klassen verteilt; gefährlich, wenn
man bei Änderungen eine vergisst

• clone() des State-Objekts kann viel Zeit kosten

– State eher für Oberflächen-Daten als gesamte Daten

– pragmatisch überlegen, ob clone() für alles benötigt wird

• gibt kein direktes Ergebnis für Aufrufer; ggfls. weiteres Publish-
Subscribe für Antworten

• sehr gut für asynchrone Systeme (Action abschicken und
weitermachen, anderer Thread erhält neue Zustände und wertet
sie aus)

Prof. Dr.
Stephan Kleuker

393OOAD

Beschreibung der Pattern

Kontext: viele verschiedene gleichartige, aber unterscheidbare

Objekte sollen verwaltet werden

Problem: Klasse soll verschiedene Objekte bearbeiten, benötigt

aber nur deren gemeinsame Eigenschaften

Lösung: Einführung von zwei abstrakten Klassen, die zum Einen

Objekterzeugung, zum Anderen Objektzugriff erlauben, Client

muss nur diese Klassen kennen

Einsatzgebiete: ... Varianten: ... Struktur: s.o. Beispiele:

Name: Abstract Factory

Patterngruppe: Objekterzeugung

Kurzbeschreibung: Client kann mit einer AbstractFactory zu einer abstrakten
Klasse passende Exemplare aus einem Satz konkreter Implementierungen für
bestimmtes Produkt erzeugen, kennt den konkreten Typ des erzeugten
Exemplars nicht

8.5

Prof. Dr.
Stephan Kleuker

394OOAD

GoF-Pattern Übersicht (nicht auswendig lernen)
Ei

n
sa

tz
b

er
e

ic
h

K
la

ss
e

O
b

je
kt

Aufgabenbereich

Erzeugung Struktur Verhalten

Factory Adapter Interpreter

Template

Abstract

Factory

Adapter Command

Builder Bridge Observer

Prototype Decorator Visitor

Singleton Facade Memento

Composite Strategy

Proxy Mediator

Flyweight State

Chain of

Responsibility

Prof. Dr.
Stephan Kleuker

395OOAD

Pattern in der UML

Pattern-Name im gestrichelten Kreis, verbunden mit eingekreisten
Klassen, verbunden mit Pattern und Benennung der Rollen

Prof. Dr.
Stephan Kleuker

396OOAD

Kritische Betrachtung von Pattern

• Pattern für Personen mit wenig Programmiererfahrung
wenig geeignet, man muss erste Erfahrungen haben, um
von Erfahrungen anderer Personen zu profitieren

• überlagernde Pattern schwer pflegbar, später in
Implementierungen teilweise schwer erkennbar

• Pattern finden Einzug in Bibliotheken, Beispiel: Event-
Handling in Java ist „Observer-Pattern“, und
Architekturen, Beispiel: MQTT (auch Obs-Obs)

• Generell sind Pattern ein wichtiger Teilschritt zum
ingenieurmäßigen SW-Engineering

• Gute Programmier-Aufgabe: Entwickeln Sie kleine
Beispiele zu allen GoF-Pattern !!!

Prof. Dr.
Stephan Kleuker

397OOAD

Patternorientierte Konzepte in der Programmierung

• Functional Interfaces / Lambda Ausdrücke

• Optional

• Streams in Java

• Dependency Injection

• Services in Java Modulen

• Kombination aus Factories und Annotationen

8.5

Video

Video

https://youtu.be/TuMNmF9Yui4

Prof. Dr.
Stephan Kleuker

398OOAD

• Ansatz: Funktionen als Parameter übergeben

• Vereinfachung für Interfaces, die genau eine Methode enthalten
(auch SAM-Types für Single Abstract Method, selber mit
@FunctionalInterface)

@FunctionalInterface // Interface mit genau einer Methode
public interface Ausgabe {
 public void ausgeben(String s);
}

public class AusgabeImpl implements Ausgabe { // Standard
 @Override
 public void ausgeben(String s) {
 System.out.println("Impl: " + s);
 }
}

Java 8 – Functional Interfaces (1/3)

Prof. Dr.
Stephan Kleuker

399OOAD

public class Main {

 public static void main(String[] args) {
 Ausgabe impl = new AusgabeImpl();
 String text = "Text";
 impl.ausgeben(text); // Impl: Text

 Ausgabe an2 = new Ausgabe(){
 @Override
 public void ausgeben(String s) {
 System.out.println("Ano: "+s);
 }
 };
 an2.ausgeben(text); // Ano: Text

 Ausgabe an3 = s -> System.out.println("Lambda: "+s);
 an3.ausgeben(text); // Lambda: Text

Java 8 – Functional Interfaces (2/3) – mit Lambda

Prof. Dr.
Stephan Kleuker

400OOAD

Ausgabe an4 = System.out::println;
 an4.ausgeben(text); // Text

 Ausgabe an5 = s -> {
 System.out.println("Lambda: "+s);
 System.out.println("noch ne Zeile");
 };
 an5.ausgeben(text); // Lambda: Text
 // noch ne Zeile
 }
}

• Lambda-Ausdrücke beschreiben Funktionen
 (Parameterliste) -> {Ausdruck bzw. Programmanweisungen}

• Spezifikation: JSR 335: Lambda Expressions for the JavaTM
Programming Language, https://jcp.org/en/jsr/detail?id=335

Java 8 – Functional Interfaces (3/3) – mit Lambda

https://jcp.org/en/jsr/detail?id=335

Prof. Dr.
Stephan Kleuker

401OOAD

Optional (1/5)

• Grundproblem der Programmierung sind undefinierte
Referenzen, also NullPointerExceptions in Java

• immer wenn Objekt Ergebnis sein kann, muss programmierende
Person damit rechnen einen Null-Wert zu erhalten

– d. h. man muss immer darauf prüfen

– oder Angebot (Schnittstelle) garantiert, dass es kein Null-Wert
ist (kann man trauen?)

• bequeme Unart, wenn Ergebnis irgendwie nicht berechenbar, z.
B. Parameter nicht ok, ist Ergebnis Null-Wert, als Abkürzung für
„irgendwie ist der Aufruf gescheitert“

• Lösung: Ergebnis wird als Optional (generischer Typ)
gekennzeichnet; Nutzung weiß damit, dass Ergebnis Null-Wert
sein kann und muss reagieren

Video

Video

https://youtu.be/0hnxraAnjms

Prof. Dr.
Stephan Kleuker

402OOAD

Optional (2/5) – Problem mit null (1/2)

public class Einkaufsliste {
private Map<String,Integer> produkte;

 public Einkaufsliste() {
 this.produkte = new HashMap<>();
 }

 public void hinzu(String prod, int anzahl) {
 this.produkte
 .put(prod, this.produkte.getOrDefault(prod, 0)
 + anzahl);
 }

 public Integer anzahlVon(String prod) {

return this.produkte.get(prod);
 }
...

Prof. Dr.
Stephan Kleuker

403OOAD

Optional (3/5) – Problem mit null (2/2)

public static void main0(String[] args) {
 Einkaufsliste ek = new Einkaufsliste();
 ek.hinzu("Bier", 3);
 ek.hinzu("Wasabi", 5);
 ek.hinzu("Bier", 6);
 System.out.println("ek: " + ek);
 System.out.println("Bier " + ek.anzahlVon("Bier"));
 System.out.println("Beer " + ek.anzahlVon("Beer"));
 int moreBeer = ek.anzahlVon("Beer") + 1;
 }

ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]
Bier 9
Beer null
Exception in thread "main" java.lang.NullPointerException

Prof. Dr.
Stephan Kleuker

404OOAD

Optional (4/5) – Problemlösung (1/2)

• Variante in Einkaufsliste

 public Optional<Integer> anzahl(String prod) {
return Optional.ofNullable(this.produkte.get(prod));

 // alternativ (zeigt weitere Optional.Erzeuger):
// if(this.anzahlVon(prod) == null) {

 // return Optional.empty();
 // }

// return Optional.of(this.anzahlVon(prod));
 }

• Optional in java.util

Prof. Dr.
Stephan Kleuker

405OOAD

Optional (5/5) – Problemlösung (2/2)
public static void main(String[] args) {

 Einkaufsliste ek = new Einkaufsliste();
 ek.hinzu("Bier", 3);
 ek.hinzu("Wasabi", 5);
 ek.hinzu("Bier", 6);
 System.out.println("ek: " + ek);
 System.out.println("Bier " + ek.anzahl("Bier").orElse(0));
 System.out.println("Beer " + ek.anzahl("Beer").orElse(0));
 int moreBeer = ek.anzahl("Beer").orElse(0) + 1;
 ek.anzahl("Bier")
 .ifPresent(b -> System.out.println(b + " mal da"));

if (!ek.anzahl("Beer").isPresent()) {
System.out.println("no beer");

 }
 }

ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]
Bier 9
Beer 0
9 mal da
no beer

Prof. Dr.
Stephan Kleuker

406OOAD

Streams ab Java 8

• Streams ab Java 8 sind gutes Beispiel zum Method Chaining (hier
genauer Fluent Programming)

• allerdings werden Methoden pro Stream-Objekt abgearbeitet

• Sammlungen werden als Streams (Folgen) von Objektreferenzen
angesehen

• Viele Stream-Methoden liefern wieder ein Stream-Objekt als
Ergebnis

• Beispiele: Filtermethoden, Umwandlungen

• Streams kurzlebig, nur einmal nutzbar (dann wieder erstellbar)

• Hier nur kurzes Konzept (gibt weitere Methoden, zusätzliche
Stream-Klassen, …)

• Hier auch weitere Nutzung von Lambda-Ausdrücken

Video

Video

https://youtu.be/2H5BcSCz84k

Prof. Dr.
Stephan Kleuker

407OOAD

Streams (1/14): POJO-Klasse (1/2)

public class Studierend {

 private int matnr;

 private String name;

 public Studierend(){ // Default-Konstruktor

 }

 public Studierend(int matnr, String name) {

 this.matnr = matnr;

 this.name = name;

 }

 public int getMatnr() {

 return this.matnr;

 }

Prof. Dr.
Stephan Kleuker

408OOAD

Streams (2/14): POJO-Klasse (2/2)

 public void setMatnr(int matnr) {

 this.matnr = matnr;

 }

 public String getName() {

 return this.name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @Override

 public String toString(){

 return this.name + " (" + this.matnr +")";

 }

} // sinnvoll: equals und hashCode

Prof. Dr.
Stephan Kleuker

409OOAD

Streams (3/14): Ausführungsrahmen

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.stream.Stream;

import entity.Studierend;

public class Main {

private List<Studierend> studierende = new ArrayList<>();

public static void main(String[] args) {

Main m = new Main();

 m.generate(10);

 m.show1(); // hier zu untersuchende Methode

}

Z. B.: http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-
Stream-Operations/75.Java8.Fundamental-Stream-Operations.html

http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html
http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html

Prof. Dr.
Stephan Kleuker

410OOAD

Streams (4/14): Erzeugung und einfache Nutzung

 public void generate(int anzahl){

 for(int i = 0; i < anzahl; i = i + 2){

 this.studierende.add(new Studierend(i, "Ute"+i));

 this.studierende.add(new Studierend(i+1, "Udo"+i));

 }

 }

 public void show1(){

 this.studierende

 .forEach(s -> System.out.println(s));

 }

 // Hinweis: ist aequivalent zu

 // this.studierende

 // .stream()

 // .forEach(s -> System.out.println(s));

Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Ute4 (4)
Udo4 (5)
Ute6 (6)
Udo6 (7)
Ute8 (8)
Udo8 (9)

Prof. Dr.
Stephan Kleuker

411OOAD

Streams (5/14): Lambda - Beispiele

public void lambda(){

 this.studierende

 .forEach((Studierend s) -> {System.out.println(s);});

 // wenn Typen eindeutig, dann weglassen

 this.studierende.forEach((s) -> {System.out.println(s);});

 // nur ein Parameter, dann keine Klammern

 this.studierende.forEach(s -> {System.out.println(s);});

 // nur ein Ausdruck oder eine Zeile, dann keine Klammern

 this.studierende.forEach(s -> System.out.println(s));

 // wenn Objekt s Parameter der einzige aufgerufenen Methode

 this.studierende.forEach(System.out::println);

}

Prof. Dr.
Stephan Kleuker

412OOAD

Streams (6/14): Möglichkeit zur Parallelisierung

 public void show2(){ // Parallelisierung

 this.studierende

 .parallelStream()

 .forEach(s -> System.out.println(s));

 }

 // Hinweis: jede Collection in Stream

 // verwandelbar, z. B.

 // int[] arr= {9,7,3,1};

 // Arrays.stream(arr)

 // .forEach(i -> System.out.println(i));

Ute6 (6)
Udo4 (5)
Udo6 (7)
Ute0 (0)
Ute2 (2)
Udo0 (1)
Udo2 (3)
Ute4 (4)
Ute8 (8)
Udo8 (9)

Prof. Dr.
Stephan Kleuker

413OOAD

Streams (7/14): Filterung

 public void show3(){

 this.studierende

 .stream()

 .filter(s -> s.getMatnr()% 3 == 0)

 .filter(s -> s.getMatnr()% 2 == 1)

 .forEach(s -> System.out.println(s));

 }

 // generell jede Boolesche Methode

 // zum Filtern nutzbar

Udo2 (3)
Udo8 (9)

Prof. Dr.
Stephan Kleuker

414OOAD

Streams (8/14): Filterung genauer (Einschub)

• Parameter in Stream-Methoden normale Objekte
public static Predicate<Integer> teiler(int val){

return x -> x%val == 0;

}

public static void main(String[] args) {

Stream<Integer> str = Stream.of(1,3,8,4,5,1,6);

 Predicate<Integer> pred1 = x -> x%2 == 0;

 str.filter(pred1)

 .forEach(System.out::println);

System.out.println(pred1.test(42));

 // kein sinnvoller Zugriff auf str mehr moeglich

 str = Stream.of(1,3,8,4,5,1,6);

 str.filter(teiler(3))

 .forEach(System.out::println);

}

8
4
6
true
3
6

Prof. Dr.
Stephan Kleuker

415OOAD

Streams (9/14): Abbildung / Umwandlung (map)

 public void show4(){

 this.studierende

 .stream()

 .filter(s -> s.getMatnr()% 3 == 0)

 .filter(s -> s.getMatnr()% 2 == 1)

 .map(s -> s.getMatnr() + ": " + s.getName())

 .forEach(s -> System.out.println(s));

 }

 // Map-Ergebnis kann Objekt beliebigen Typs sein

 // z. B. auch Object-Array

 // man sieht auch mehrzeile Funktion mit Rückgabe

 // .map(s -> {

 // String[] erg = {s.getName(), ""+s.getMatnr()};

 // return erg;

 // })

3: Udo2
9: Udo8

Video

Video

https://youtu.be/rQchxhVxHL8

Prof. Dr.
Stephan Kleuker

416OOAD

Streams (10/14): Detailanalyse
public void show5(){

 this.studierende

 .stream()

 .peek(s -> System.out.println(s))

 .filter(s -> s.getMatnr()%3 == 0)

 .peek(s -> System.out.println(s))

 .filter(s -> s.getMatnr()%2 == 1)

 .peek(s -> System.out.println(s))

 .map(s -> s.getMatnr() + ": " + s.getName())

 .peek(s -> System.out.println(s))

 .forEach(s -> System.out.println("------"));

}

// logisch nacheinander abgearbeitet

// für Performance und Parallelität, startet

// Bearbeitung pro Objekt mit terminaler Methode

// peek sieht Objekt, konsumiert es nicht

// !! kein reines Method Chaining !!

Ute0 (0)
Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Udo2 (3)
Udo2 (3)
3: Udo2

Ute4 (4)
Udo4 (5)
Ute6 (6)
Ute6 (6)
Udo6 (7)
Ute8 (8)
Udo8 (9)
Udo8 (9)
Udo8 (9)
9: Udo8

Prof. Dr.
Stephan Kleuker

417OOAD

Streams (11/14): Lazy Evaluation

public Set<Studierend> showLazy() {

 return this.studierende

 .stream()

 .filter(s -> {

 System.out.println(s);

 return s.getMatnr() > 2 && s.getMatnr() < 9;

 })

 .skip(2)

 .limit(3)

 .collect(Collectors.toSet());

}

... // in Main

System.out.println(m.showLazy());

Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Ute4 (4)
Udo4 (5)
Ute6 (6)
Udo6 (7)
[Udo4 (5), Udo6
(7), Ute6 (6)]

Prof. Dr.
Stephan Kleuker

418OOAD

Streams (12/14): Zusammenfassung (reduce)

 public void show6(){

 System.out.println(

 this.studierende

 .stream()

 .filter(s -> s.getMatnr()%3 == 0)

 .filter(s -> s.getMatnr()%2 == 1)

 .map(s -> s.getMatnr() + ": " + s.getName())

 .reduce("Studis:", (s1,s2) -> s1 + ", " + s2)

);

 }

 // reduce macht Schleife über alle Stream-Objekte

 // s1: bisheriges Ergebnis (initial "Studis")

 // s2: aktuelles Objekt aus dem Stream

Studis:, 3: Udo2, 9: Udo8

Prof. Dr.
Stephan Kleuker

419OOAD

Streams (13/14): Gruppierung

public void show7(){

 Map<Integer,List<Studierend>> aufgeteilt =

 this.studierende

 .stream()

 .collect(Collectors

 .groupingBy(s -> s.getMatnr() % 3));

 aufgeteilt

 .forEach((k,v) -> System.out.println(k + ": " +v));

}

// collect liefert Map mit Ergebniswert als key und Liste

// zugehöriger Objekte als value

0: [Ute0 (0), Udo2 (3), Ute6 (6), Udo8 (9)]
1: [Udo0 (1), Ute4 (4), Udo6 (7)]
2: [Ute2 (2), Udo4 (5), Ute8 (8)]

Prof. Dr.
Stephan Kleuker

420OOAD

Streams (14/14): viele weitere Möglichkeiten

public static void main(String[] args) {

 IntStream.range(1, 4).forEach(System.out::println);

 double d = IntStream.range(1, 4)

 .average()

 .orElse(42);

 System.out.println("d: " + d);

 double d2 = IntStream.range(1, 1)

 .average()

 .orElse(0);

 System.out.println("d2: " + d2);

 IntStream.range(1, 4)

 .mapToObj(p -> new int[]{p, p*p})

 .forEach(a -> System.out.println(a[0] + " " + a[1]));

}

1
2
3
d: 2.0
d2: 0.0
1 1
2 4
3 9

Prof. Dr.
Stephan Kleuker

421OOAD

Dependency Injection

woher kommen Objekte für Exemplarvariablen?

• Variante 1: Werte werden als Parameter übergeben, aus denen
Objekte gebaut werden

• Variante 2: Objekte werden als Referenzen übergeben

– Optimierung: Typen der Objektvariablen sind Interfaces; so
konkrete Objekte leicht austauschbar

• Variante 2 heißt Dependency Injection mit get- und set-
Methoden oder über Konstruktoren

• gutes Video: https://www.youtube.com/watch?v=IKD2-MAkXyQ

• Standard-Framework: CDI (Contexts and Dependency Injection,
JSR-365, https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html)

Video

Video

https://www.youtube.com/watch?v=IKD2-MAkXyQ
https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
https://youtu.be/c-w4Qb1sLd4

Prof. Dr.
Stephan Kleuker

422OOAD

Dependency Injection - Beispiel

Nutzend nutzend = new Nutzend(new Inter1RealA(42)

 , new Inter2RealC(43)

 , new Inter3RealD("Hallo"));

Prof. Dr.
Stephan Kleuker

423OOAD

CDI – Minibeispiel (1/4)

• Ein Klasse Nutzend, zentrales Objekt, wird in mehreren Klassen
benötigt (soll hier Singleton sein; nur als Beispiel)
@Singleton // CDI-Anntotation

public class Nutzend {

 private int rechte = 42;

 private String name = "Douglas";

 public int getRechte() {return this.rechte;}

 public void setRechte(int rechte) {this.rechte = rechte;}

 public String getName() {return name;}

public void setName(String name) {this.name = name;}

 @Override

 public String toString() {

 return "Nutzend [rechte="+rechte+", name=" +name+"]"; }

}

Prof. Dr.
Stephan Kleuker

424OOAD

CDI – Minibeispiel (2/4)
public class ControllerA {

 @Inject

 private Nutzend nutzend;

 @PostConstruct

 public void initialize() {

 System.out.println("startA");

 }

 @PreDestroy

 public void cleanup() {

 System.out.println("endeA");

 }

 public void aendereRechte(int wert) {

 this.nutzend.setRechte(wert);

 }

 public Nutzend getNutzend() { return this.nutzend; }

}

Prof. Dr.
Stephan Kleuker

425OOAD

CDI – Minibeispiel (3/4)
public class ControllerB {

 @Inject

 private Nutzend nutzend;

 @PostConstruct

 public void initialize() {

 System.out.println("startB");

 }

 @PreDestroy

 public void cleanup() {

 System.out.println("endeB");

 }

 public void aendereName(String wert) {

 this.nutzend.setName(wert);

 }

 public Nutzend getNutzend() { return this.nutzend; }

}

Prof. Dr.
Stephan Kleuker

426OOAD

CDI – Minibeispiel (4/4)

public static void main(String[] args) {

 Weld weld = new Weld();

try (WeldContainer wC = weld.initialize()) {

ControllerA ca = wC.select(ControllerA.class).get();

 System.out.println("A: " + ca.getNutzend());

 ca.aendereRechte(41);

ControllerB cb = wC.select(ControllerB.class).get();

 cb.aendereName("Dirk");

 System.out.println("B: " + cb.getNutzend());

 }

 } startA
A: Nutzend [rechte=42, name=Douglas]
startB
B: Nutzend [rechte=41, name=Dirk]
endeA
endeB

Prof. Dr.
Stephan Kleuker

427OOAD

Java Module (1/5) – Services – Beispiel für Strategy

• neben dem vorgestellten Modulansatz unterstützt das Java-
Modulsystem Services (ursprüngliches Konzept ab Java 6)

• Service ist zunächst einfaches Interface (z. B. DienstInterface),
zugehöriges Paket mit „exports“

• Service-Realisierer, z. B. Dienst1 realisieren Interface

– benötigt „requires“ Modul mit Interface

– hat parameterlosen Konstruktor

– kennzeichnet die Dienstrealisierung

– provides DienstInterface with Dienst1

• Dienstnutzungen müssen dies kennzeichnen

– uses DienstInterfaces

– JVM ermöglicht über alle vorhandenen Implementierungen
zu iterieren und zu nutzen

Video

Video

https://youtu.be/A6126vzwTPk

Prof. Dr.
Stephan Kleuker

428OOAD

Java Module (2/5) - Beispiel

Prof. Dr.
Stephan Kleuker

429OOAD

Java Module (3/5) – module-info.java Dateien

module bsp.dienst {
 exports dienst;
}

module bsp.dienst1 {
 requires transitive bsp.dienst;
 exports impl1;
 provides dienst.DienstInterface
 with impl1.Dienst1;
}

module bsp.dienst2 {
 requires transitive bsp.dienst;
 exports impl2;
 provides dienst.DienstInterface
 with impl2.Dienst2;
}

module bsp.modulnutzung {
 requires bsp.dienst1;
 requires bsp.dienst2;
 uses

dienst.DienstInterface;
}

Prof. Dr.
Stephan Kleuker

430OOAD

Java Module (4/5) - Nutzung
public class Main {

public static void main(String[] args) {

 ServiceLoader<DienstInterface> sl

 = ServiceLoader.load(DienstInterface.class);

 for(DienstInterface di: sl) {

 Ergebnis erg = di.mach1(1, 42);

System.out.println("Service: " + di.getClass()

 +" Q: " + di.qualitaet()

 + " erg: " + erg.getText());

 }

 }

}

• es wird immer nur ein Service pro Ausführung erstellt (Singleton)

• es werden keine Objekte direkt erstellt (kein new; zwar erlaubt,
verstößt aber gegen Konzept)

Beispielausgabe:
Service: class impl2.Dienst2 Q: 42 erg: 42
Service: class impl1.Dienst1 Q: 20 erg: 43

Prof. Dr.
Stephan Kleuker

431OOAD

Java Module (5/5) – Variante Factory

module bsp.dienstfactory {
 requires transitive bsp.dienst;
 exports impl3;
 provides dienst.DienstInterface with impl3.DienstFactory;
}

public class DienstFactory {
 public static DienstInterface provider() {
 return new DienstInterface() {
 @Override
 public Ergebnis mach1(int arg0, int arg1) {
 return new Ergebnis();
 }

 @Override
 public int qualitaet() { return 100; }
 };
 }
}

Prof. Dr.
Stephan Kleuker

432OOAD

Nutzung von Komponenten

• Komponente: konfigurierbare,
übersetzte Software, die klare
Funktionalität anbietet

• Beispiel: Komponente bietet
Kämpfer-Objekte an

• benötigt Klasse, die die
Erzeugung ermöglicht

Prof. Dr.
Stephan Kleuker

433OOAD

Validierungs-Framework (Bean Validation 1.1, JSR 349)

public abstract class Kaempfend {

 @Min(value=0, message = "Gesundheit nicht negativ")

 protected int gesundheit;

 @Min(value=3, message="minimale Staerke beachten")

 @Max(value= 15, message="maximale Staerke beachten")

 protected int staerke;

 @Min(value=5, message="minimales Geschick beachten")

 @Max(value= 20, message="maximales Geschick beachten")

 protected int geschick;

 // wie vorher

Prof. Dr.
Stephan Kleuker

434OOAD

public static void main(String[] s) {
 AbstractKaempfendFactory kf = KaempfendArtFactory
 .kaempfendFactoryErstellen("basic");
 Kaempfend k = kf.kaempfendErstellen(2);
 k.setGesundheit(-1);
 k.setGeschick(22);
 ValidatorFactory factory = Validation
 .buildDefaultValidatorFactory();
 Validator validator = factory.getValidator();
 for (ConstraintViolation<Kaempfend> c :
 validator.validate(k)) {
 System.out.println(" :: " + c.getMessage());
 }
 }

Beispielnutzung der Validierung

:: maximales Geschick beachten
 :: minimale Staerke beachten
 :: Gesundheit nicht negativ

Prof. Dr.
Stephan Kleuker

435OOAD

Persistenz-Framework (JPA 2.1, JSR 338)

@Entity

public abstract class Kaempfend {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 protected int knr;

 @Min(value = 0, message = "Gesundheit nicht negativ")

 protected int gesundheit;

 @Min(value = 3, message = "minimale Staerke beachten")

 @Max(value = 15, message = "maximale Staerke beachten")

 protected int staerke;

 @Min(value = 5, message = "minimales Geschick beachten")

 @Max(value = 20, message = "maximales Geschick beachten")

 // wie vorher, konkrete Klassen auch mit @Entity annotiert

Prof. Dr.
Stephan Kleuker

436OOAD

public static void main(String[] s) {
 AbstractKaempfendFactory kf = KaempfendArtFactory
 .kaempfendFactoryErstellen("basic");
 Kaempfend k = kf.kaempfendErstellen(2);
 k.setGesundheit(100);
 k.setStaerke(7);
 k.setGeschick(9);
 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("KaempfendPU");
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();
 em.persist(k);
 em.getTransaction().commit();
 em.close();
 emf.close();
 }

Beispielnutzung der Persistenz

SELECT * FROM Kaempfend

Prof. Dr.
Stephan Kleuker

437OOAD

7. Konkretisierungen im
Feindesign

7.1 Zustandsdiagramme

7.2 Object Constraint Language

Video

Video

https://youtu.be/1GS2Gj_O0lQ

Prof. Dr.
Stephan Kleuker

438OOAD

Verfeinerte Modellierung

• Durch die verschiedenen Sichten der Systemarchitektur wird der
Weg vom Anforderungsmodell zur Implementierung beschrieben

• Es bleiben offene Themen:

– Wie bekomme ich ein gutes Klassendesign (nächstes Kapitel)?

– Wie kann man das komplexe Verhalten von Objekten noch
beschreiben (Klassendiagramme sind statisch,
Sequenzdiagramme exemplarisch)?

 Antwort: Zustandsdiagramme

– Wie kann man bei der Klassenmodellierung Randbedingungen
formulieren, was in Klassendiagrammen (Bedingungen in
geschweiften Klammern) nur bedingt möglich ist?

 Antwort: Object Constraint Language

Prof. Dr.
Stephan Kleuker

439OOAD

Zustandsdiagramme

• generell wird der Zustand eines Objekts durch die Werte seiner
Exemplar- und Klassenvariablen beschrieben

• Häufig wird der Begriff Zustand auch für eine spezielle
Exemplarvariable genutzt, die z. B. über eine Enumeration
realisierbar ist

• z. B. : Ampel: rot, rotgelb, gelb, grün
• z. B. : Projekt: vorbereitet, grob geplant, mitarbeitende

Personen zugeordnet, verschoben, in Bearbeitung, in
Endabnahme, in Gewährleistung, beendet

• Übergänge zwischen den Zuständen werden durch Ereignisse,
zumeist Methodenaufrufe, veranlasst

• Übergänge lassen sich durch ein Zustandsdiagramm
(ursprünglich Statechart nach D. Harel) spezifizieren

• Zustandsautomaten spielen auch in der theoretischen und
technischen Informatik eine zentrale Rolle

7.1

Prof. Dr.
Stephan Kleuker

440OOAD

Struktur von Zustandsdiagrammen

• Zustandsdiagramm gehört zu einem Objekt einer Klasse

• alle Angaben für Zustände und Transitionen sind optional

• Transition wird ausgeführt, wenn Ereignis eintritt und
Bedingung erfüllt ist

• ohne Ereignis und Bedingung wird Transition dann ausgeführt,
wenn Entry, Do, und Exit durchlaufen

• Einfacher Automat muss deterministisch sein

Prof. Dr.
Stephan Kleuker

441OOAD

Beispiel: Zustandsdiagramm eines Projekts

• man erkennt: nach Planung keine Planungsänderung

Prof. Dr.
Stephan Kleuker

442OOAD

Hierarchische Zustände

Prof. Dr.
Stephan Kleuker

443OOAD

Parallele Unterzustände

• unabhängige Teilzustände
können in parallelen
Zuständen bearbeitet
werden

• ohne Parallelität müsste
Kreuzprodukt der Zustände
der parallelen Automaten
betrachtet werden

Video

Video

https://youtu.be/rLL77u-pWP4

Prof. Dr.
Stephan Kleuker

444OOAD

Beispiel: Uhr

Prof. Dr.
Stephan Kleuker

445OOAD

Zustandsmodellierung und Realzeitsysteme

• in klassischen OO-
Programmen gibt es
meist wenige zentrale
Klassen, für die sich eine
Zustandsmodellierung
anbietet

• In Systemen mit Zeit kann
Zustandsmodellierung
Zeitbedingungen
beinhalten

• auch warte(5 sek)

Prof. Dr.
Stephan Kleuker

446OOAD

Event [Condition] / Action

• Transitionsbeschriftung Ereignis[Bedingung]/Aktion

• Was ist Ereignis? Hängt von Applikation ab

– Methodenaufruf

– Ereignis im Programm (Variable wechselt Wert)

– technische Systeme: Signale

typisches Beispiel: Steuersysteme

• erhalten Signale (->Ereignisse) von Sensoren wenn etwas
passiert (z. B. ein-/ausgeschaltet)

• lesen Werte anderer Sensoren, Teilsysteme (-> Bedingung), die
Entscheidungen beeinflussen

• senden Signale (-> Aktion) an andere Systeme

Prof. Dr.
Stephan Kleuker

447OOAD

Microsteps und Macrosteps (1/2)

• Actions eines Teilautomaten können Events eines anderen
Teilautomaten sein

• Microstep: einzelne Schritte betrachten

Start -> K(A1,B1) –p-> K(A2,B1) –x-> K(A2,B2) –q-> K(A3,B2) –y-
> K(A3,B3) –z-> K(A3,B1) –r-> K(A1,B1)

Prof. Dr.
Stephan Kleuker

448OOAD

Microsteps und Macrosteps (2/2)

• Macrostep: nur Zustände nach vollständiger Bearbeitung
betrachten (Ausnahme: Livelock)

 Start -> K(A1/B1) –p-> K(A3/B3) –z-> K(A1/B1)

• typischerweise nur an Macrosteps interessiert

Prof. Dr.
Stephan Kleuker

449OOAD

Beispiel: Start-Stopp-Automatik (1/4)

• zentrale Aufgabe: Start-Stopp-Automatik stellt den Motor
immer dann selbstständig aus, wenn dieser nicht mehr
benötigt wird (z. B. Halt an Ampel)

• Randbedingung: keine Abschaltung bis maximal 3 Grad und ab
minimal 30 Grad

• Ablauf:

– Zündschlüssel einstecken, Motorstartknopf drücken, dann
startet Automatik

– Motorein- und Abschaltung wird anhand der Kupplung
erkannt

– Automatik kann auch wieder gestoppt werden

• [Frage: was fehlt alles zur Realität]

Video

Video

https://youtu.be/m7hk_gWw6yI

Prof. Dr.
Stephan Kleuker

450OOAD

Beispiel: Start-Stopp-Automatik (2/4)

• Klärung, von welche Sensoren werden Signale empfangen:

– Zündschloss: start und ende

– Kupplung: leerlauf und druecken

– Automatiksteuerung: an und aus

• Klärung, welchen Sensoren können abgefragt werden:

– Temperaturwert temp in lokaler Variablen

• Klärung an welche Aktoren Signale geschickt werden

– Motorsteuerung: motor_an und motor_aus

Prof. Dr.
Stephan Kleuker

451OOAD

Beispiel: Start-Stopp-Automatik (3/4)

„Blockschaltbild“

Prof. Dr.
Stephan Kleuker

452OOAD

Beispiel: Start-Stopp-Automatik (4/4)

Prof. Dr.
Stephan Kleuker

453OOAD

Umsetzung von Zustandsdiagrammen

• Abhängig davon, wie formal die Zustände und Transitionen
spezifiziert sind, kann aus Zustandsdiagrammen Programmcode
erzeugt werden

• Typisch: Iteratives Vorgehen: informelle Beschreibungen werden
schrittweise durch formalere ersetzt

• Ereignisse können für folgendes stehen

– Methodenaufrufe

– externe Ereignisse des GUI (-> Methodenaufruf)

– Teilsituation, die bei der Abarbeitung einer Methode auftreten
kann

• Automat wird zunächst zu komplexer Methode, die z. B. anhand
der Zustände in Teilmethoden refaktoriert werden kann

Prof. Dr.
Stephan Kleuker

454OOAD

GUI als Zustandsautomat

Prof. Dr.
Stephan Kleuker

455OOAD

Android als Zustandsdiagramm

Prof. Dr.
Stephan Kleuker

456OOAD

Klassendiagramm und versteckte Randbedingungen

Welche Randbedingungen vermuten Sie?
7.2

Video

Video

https://youtu.be/5lc7kVYcX8s

Prof. Dr.
Stephan Kleuker

457OOAD

Grundidee von Object Constraint Language (OCL)

• Rahmenbedingungen (Constraints) definieren, die von
Objekten bzw. Objektmengen eingehalten werden können

• Constraints sind prüfbar

• möglichst einfach formulierbar (ursprünglich zur Formulierung
von Geschäftsregeln für Versicherungsanwendungen,
[Syntropy, IBM])

• Angepasst an Objektorientierung:

– Zugriff auf Exemplarvariablen

– Zugriff auf Methoden, die keine Objektveränderungen
vornehmen

– Vererbung wird beachtet

• typisiert, Collections wichtiger Typ

Prof. Dr.
Stephan Kleuker

458OOAD

Einfache Bedingungen für Objekte (Invarianten)

• Die Matrikelnummer ist mindestens 10000
context Studierend inv hoheMatrikelnummern:

self.matnr >= 10000

• eine Variante:
context s:Studi inv:

s.matnr >= 10000

• context gibt eindeutig an, um welche Klasse es geht

• Strukturierung durch Nutzung der Paketstruktur
package com::meineFirma::meineSW

 context Studierend inv: ...

 context Studierend inv: ...

endpackage

Prof. Dr.
Stephan Kleuker

459OOAD

Vor- und Nachbedingungen für Methoden

• Wenn Studierend-Objekt da, dann hört er Veranstaltungen
context Studierend::belegteVeranstaltungen():Integer

pre studiIstDa: self.freisemester = false

post hoertVeranstaltungen: result > 0

• Man kann auf Parameter der Methoden zugreifen

• result ist vordefiniert (vom Rückgabetyp)

• Erhöhung der Anzahl der belegten Veranstaltungen:
context Studierend::veranstaltungEintragen(v: Veranstaltung)

pre: nichtBelegt(v)

post: self.belegteVeranstaltungen()@pre

 = self.belegteVeranstaltungen()-1

• self.belegteVeranstaltungen()@pre, für Ergebnis vor der
Methodenausführung

Prof. Dr.
Stephan Kleuker

460OOAD

Einschub: Basistypen und Operationen

• Jeder OCL-Ausdruck hat einen Typ

• Verknüpfe Ausdrücke müssen vom Typ her passen

• Geringe Typanpassungen möglich
Typ Beispielwerte

Boolean true, false

Integer 1, -5, 42, 4242424242

Real 3.14, 42.42, -99.999

String 'Hallo Again', 'Heidi', ''

Typ Beispieloperationen

Boolean and,or,xor,not,implies,if then else endif

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

String concat(), size(), substring()

Prof. Dr.
Stephan Kleuker

461OOAD

Zugriff auf Assoziationen

• Zugriff auf verbundene Elemente möglich, Kardinalitäten
beachten (einfach oder Menge)

• wenn Relation benannt, dann dieser Name

 sonst über Name der verbundenen Klasse (klein)

• Lehrkräfte laufender Veranstaltungen sind nicht im Ausland
context Veranstaltung inv:

self.status = Veranstaltungsstatus::laeuft

 implies

 not self.lehrkraft.imAusland

• Man sieht auch Zugriff auf eine Enumeration

Video

Video

https://youtu.be/mjlNRDIIUBU

Prof. Dr.
Stephan Kleuker

462OOAD

Assoziationsklassen

• Ausgehend von Assoziationsklassen kann mit Punktnotation auf
beteiligte Klassen (deren Objekte) mit deren Rollennamen
zugegriffen werden

• Prüfungsnoten nur für abgeschlossene Veranstaltungen
context Pruefung inv:

 self.studienfach.status =

 Veranstaltungsstatus::abgeschlossen

 implies

 (self.note>=1.0 and self.note<=5.0)

Prof. Dr.
Stephan Kleuker

463OOAD

Beispiele: Mengenoperationen (1/2)

• bei der Betrachtung zugehöriger Objekte ist das Ergebnis meist
eine Collection von Objekten

• in OCL auch: Set, OrderedSet, Sequence, Bag

• auf Collections existieren verschiedene Methoden, genereller
Aufruf

collection -> methode(<parameter>)

• Ergebnis kann wieder eine Collection oder ein Wert eines
anderen Typs sein

• Studi macht höchstens 12 Veranstaltungen

context Studierend inv:

self.studienfach

 -> select (s | s.status =

 Veranstaltungsstatus::laeuft)

 -> size() <= 12

Prof. Dr.
Stephan Kleuker

464OOAD

Beispiele: Mengenoperationen (2/2)

• Korrektheit von hatTheorieBestanden
context Studierend::hatTheorieBestanden():Boolean

post: result = self.pruefung

 -> exists(p | p.note<=4.0

 and p.studienfach.titel='Theorie'))

• Korrektheit für bestandeneVeranstaltungen
context Studierend::
bestandeneVeranstaltungen():Collection

post: result=self.pruefung

 ->select(p | p.note<=4.0)

 ->iterate(p:Pruefung;

 erg:Collection=Collection{}|

 erg->including(p.studienfach))

Prof. Dr.
Stephan Kleuker

465OOAD

9. Implementierungsaspekte

nur I
deen, I

nhalte
 der

andere
n V

orle
sungen

Video

Video

https://youtu.be/ZjAWBLWZl2E

Prof. Dr.
Stephan Kleuker

466OOAD

Beispiel: Rahmenbedingungen für SW-Architektur

• Berücksichtigung von speziellen SW-Schnittstellen nicht
objektorientiert entwickelter Systeme, z. B. von Application
Programming Interfaces (API) fremder SW

• Berücksichtigung/Benutzung existierender
Datenhaltungssysteme, z. B. Vorgabe des
Datenbankmanagementsystems (DBMS)

• Berücksichtigung bestimmter Design-Prinzipien, z. B.
Gesamtsteuerung mit Enterprise Java Beans (JEE) oder .NET für
die Realisierung

• Alt-Software (z. B. in COBOL), so genannte Legacy-Systeme
müssen eingebunden werden; Einsatz einer Middleware (z. B.
Common Object Request Broker Architecture, CORBA)

9.1

Prof. Dr.
Stephan Kleuker

467OOAD

Einfluss nichtfunktionaler Anforderungen

Beispiel: Sicherheit (Security)

• Alle Nachrichten müssen über den speziellen Krypto-Server
laufen; dieser hat bestimmte Bandbreite (Bottle-neck); SW
muss auf allen Seiten möglichst viel ohne Verbindung arbeiten
können (Redundanz wird erlaubt)

Beispiel: Sicherheit (Safety)

• Berechnungen zur Steuerung müssen redundant auf drei
Rechnern mit unterschiedlichen Verfahren durchgeführt
werden

Beispiel: Performance

• Die rechenintensiven 3D-Berechnungen müssen sehr schnell
sein; dies kann zum Einsatz von C mit langen komplexen
Funktionen führen

Prof. Dr.
Stephan Kleuker

468OOAD

Rahmenbedingung: verteilte Systeme

• in der klassischen OO-Programmierung gibt es einen
Programmablauf (Prozess) und man nutzt synchrone Aufrufe:
Objekt O1 ruft Methode von Objekt O2 auf; O2 übernimmt die
Programmausführung und antwortet dann O1

• bei verteilten Systemen laufen viele Prozesse parallel ab, die
Informationen austauschen können

• synchroner Aufruf ist möglich, bedeutet aber, dass Verbindung
aufgebaut werden muss und Sender bzw. Empfänger auf
Bereitschaft warten müssen

• asynchroner Aufruf bedeutet, dass Sender Aufruf abschickt und
danach weiterarbeitet; später prüft, ob ein Ergebnis vorliegt

• asynchrone Aufrufe sind schneller (nur abschicken); Prozesse sind
aber schwer zu synchronisieren

• die Herausforderung effizienter verteilter Systeme hat nicht die
eine Lösung und wird Sie Ihr Informatik-Leben-lang verfolgen

9.2

Prof. Dr.
Stephan Kleuker

469OOAD

Probleme der Aufrufmechanismen

synchroner Aufruf

asynchroner Aufruf

Prozess A

Problem: Deadlock

Prozess B Prozess C

Problem: B denkt, x hat vor
y stattgefunden

Problem: C denkt, x hat vor
y stattgefunden, A denkt,
y hat vor x stattgefunden

warten auf
Antwort

warten auf
Antwort

Prof. Dr.
Stephan Kleuker

470OOAD

Typische Probleme verteilter Systeme

• Deadlocks: kein Prozess/Thread kann voran schreiten

• partielle Deadlocks: einige Prozesse im Deadlock, andere nicht

• Livelocks: System versucht, sich zyklisch zu synchronisieren, ohne
dass das System voran schreitet

• (starke) Fairness : kommen Prozesse, die immer mal wieder darauf
warten, in den kritischen Bereich zu kommen, auch dran

• (schwache) Fairness: kommen Prozesse, die immer darauf warten,
in den kritischen Bereich zu kommen, auch dran

• synchronized() in Java (Methode wird garantiert ohne
Parallelnutzung des aufgerufenen Objekts genutzt) hat starken
negativen Einfluss auf die Laufzeit

• Erinnerung/Ausblick: Notwendige Transaktionssteuerung bei
Datenbankmanagementsystemen

Prof. Dr.
Stephan Kleuker

471OOAD

Beispiel: Varianten von Client-Server-Systemen

• Thin Client: Hier nur
Datenannahme,
Weiterleitung, Darstellung,
keine komplexen
Berechnungen

• Beispiele: Web-Browser, DB-
Clients

• Fat Client: Client führt eigene
komplexe Berechnungen aus;
nutzt Server nur zur Verwaltung
zentraler Informationen und zum
Nachrichtenaustausch

• Beispiel: vernetzbare Stand-
alone-Spiele (Autorennen)

Client

Server

Netzwerk
Client

Server

Netzwerk

Prof. Dr.
Stephan Kleuker

472OOAD

Beispiel: 3-Tier-Architektur
Verteilung:

• Nur Darstellung (GUI) beim
Client

• eigener Server für Anwendung

• eigene Datenspeicherung

Vorteile:

• benötigte DB-Verbindungen
können angepasst werden
(Kosten)

• Datenbank nicht direkt für
Client zugreifbar (Sicherheit)

• Änderungen einer Schicht
müssen andere Schichten nicht
beeinflussen

Client

Präsentationsschicht

Server für Anwendung

eigentliche Anwendungs-SW

Datenbank-Server

persistente Datenhaltung

Prof. Dr.
Stephan Kleuker

473OOAD

Nutzung von Programmbibliotheken

• Programmbibliotheken stellen Standardlösungen für häufig
wiederkehrende Probleme dar

• typische Nutzung: entwickelnde Person erzeugt und ruft Objekte
(Klassen) der Bibliothek auf

• Bibliotheken sind geprüft, (hoffentlich) für Laufzeiten optimiert
• Dokumentation von Bibliotheken wichtig zum effizienten Einsatz

(was rufe ich wann auf)
• Je größer der Verbreitungsgrad, desto einfacher die

Weiterverwendung von Ergebnissen (großer Vorteil der Java-
Klassenbibliothek)

• Grundregel für erfahrene entwickelnde Personen: Erfinde das Rad
niemals zweimal, weiß aber, wo viele Blaupausen für viele
verschiedene Räder sind

• Grundregel für mit Informatik-Beginnende: Lerne zu verstehen,
wie man das erste Rad baut, baue das erste Rad und lerne warum
man wie die Blaupause variieren kann

9.4

Prof. Dr.
Stephan Kleuker

474OOAD

Idee von Komponenten

• Komponenten sind komplexe in sich abgeschlossene „binäre“ SW-
Bausteine, die größere Aufgaben übernehmen können

• Ansatz: SW statt aus kleinen Programmzeilen aus großen
Komponenten (+ Klebe-SW) zusammen bauen

• Komponenten werden konfiguriert, dazu gibt es get-/set-Methoden
(Schnittstelle) oder/und Konfigurationsdateien

• Beispiel Swing-Klassen, wie JButton haben (u. a.)
Komponenteneigenschaft; man kann u. a. einstellen:
– Farben (Hintergrund, Vordergrund)
– Schrifttypen
– Form der Ecken
– dargestelltes Bild

• Komponenten sind themenorientiert und können unterschiedliche
Aufgaben erfüllen (z. B. Daten filtern, Werte überwachen)

9.5

Prof. Dr.
Stephan Kleuker

475OOAD

Idee der Framework-Technologie

• statt vollständiger SW werden Rahmen programmiert, die um
Methodenimplementierungen ergänzt werden müssen

• Frameworks (Rahmenwerke) können die Steuerung
gleichartiger Aufgaben übernehmen

• typische Nutzung: entwickelnde Person instanziiert
Framework-Komponenten, d. h. übergibt seine Objekte zur
Bearbeitung durch das Framework; typischer Arbeitsschritt:
Framework steuert, d. h. ruft Methode der entwickelnden
Person auf

• eventuelles Problem: schwieriger Wechsel zu anderem
Framework oder bei Ablösung des Frameworks

9.6

Prof. Dr.
Stephan Kleuker

476OOAD

Ziele komplexere Framework-Ansätze

neben Spezialaufgaben werden hauptsächlich folgende Aufgaben
gelöst

• sorgenfreies Lesen und Speichern von Objekten in
Datenbanken (Persistenz)

• sorgenfreie konsistente Verteilung von Informationen
(Prozesskommunikation)

• sorgenfreie Steuerung verteilter Abläufe mit Überwachung von
Transaktionen

• Beispiele sind Jakarta Enterprise Edition, Microsoft Dot-Net-
Technologie, Spring, Hibernate, viel im Bereich AJAX

Prof. Dr.
Stephan Kleuker

477OOAD

Persistente Datenhaltung

Typische Java-Möglichkeiten

• Anschluss an klassische relationale DB über JDBC (typisch bei
Anbindung an existierende DB)

• Nahtlose Integration der Datenhaltung in die Entwicklung
(Ansatz: statt Objekt zu erzeugen Methode holeObjekt(), später
sichere Objekt), typisch für Hibernate (häufig genutzt, bei
kleinen Spezialanwendungen, z. B. Handy, Organizer)

• relativ nahtlose Integration durch zusätzliche Software, die
objekt-relationales Mapping übernimmt

• Nutzung eines Frameworks, das Persistenz und
Transaktionssteuerung übernimmt, Enterprise Java Beans

9.7

Prof. Dr.
Stephan Kleuker

478OOAD

Beispiel: JavaBeans (kleiner Ausschnitt)
• Java unterstützt Reflektion, damit kann ein Objekt nach seiner

Klasse, seinen Exemplarvariablen und Exemplarmethoden befragt
werden

• Hält man sich an folgende einfache Regel für eine Klasse
– sie implementiert Serializable (geht nur, wenn alle

verwendeten Typen Serializable)
– für alle Exemplarvariablen gibt es die Standard get- und set-

Methoden
– es gibt einen leeren Default-Konstruktor

 dann sind einige Framework-Ansätze nutzbar
– Objekte speichern und lesen in XML
– Nutzung als JavaBeans (sinnvoll weitere Standardmethoden)
– Objekte speichern in einer Datenbank mit JPA, als Entity
– Objekte im Binärformat lesen und schreiben (reicht

Serializable)

Prof. Dr.
Stephan Kleuker

479OOAD

XMLEncoder und XMLDecoder (Ausschnitt)
private void speichern(String datei){

 try (XMLEncoder out= new XMLEncoder(

 new BufferedOutputStream(new FileOutputStream(datei)))){

 out.writeObject(table.getModel());

 } catch (FileNotFoundException e) {} //wegschauen

}

private void laden(String datei){

try (XMLDecoder in= new XMLDecoder(

 new BufferedInputStream(new FileInputStream(datei)))){

 table.setModel((DefaultTableModel)in.readObject());

 } catch (FileNotFoundException e) {} //wegschauen

}

Prof. Dr.
Stephan Kleuker

480OOAD

Refactoring

• Komplexe Methoden sollen grundsätzlich vermieden werden
• Lösungsansatz: Refactoring, d. h. ein Programmblock wird in einer

Methode mit selbsterklärendem Namen ausgegliedert
• Wann ist Ausgliederung möglich?

– Im Block darf nur eine lokale Variable auf der linken Seite einer
Zuweisung stehen

• Wie funktioniert Refactoring?
– Bestimme alle lokalen Variablen, die im Block lesend genutzt

werden; diese werden zu Parametern
– Falls eine lokale Variable links in einer Zuweisung vorkommt,

bestimmt sie den Rückgabetypen (sonst void)
• Exemplarvariablen spielen keine Rolle, da auf sie in allen

Methoden der Klasse zugegriffen werden darf
• Probleme bei mehr als einer zu verändernden lokalen Variablen

oder bei enthaltenen Rücksprüngen (aufwändig regelbar)

9.10

Prof. Dr.
Stephan Kleuker

481OOAD

public int ref(int x, int y, int z){

int a = 0;

if(x > 0){

a = x;

x++;

--y;

a = a + y + z;

}

return a;

}

Refactoring – Positives Beispiel

public int ref(int x, int y, int z){
int a = 0;
if(x > 0){
a = this.mach(x, y, z);

}
return a;

}

private int mach(int x, int y, int z){
int a;
a = x;
x++;
--y;
a = a + y + z;
return a;

}

Prof. Dr.
Stephan Kleuker

482OOAD

public int ref2(int x){

int a = 0;

int b = 0;

int c = 0;

if(x > 0){

a = x;

b = x;

c = x;

}

return a + b + c;

}

Refactoring – nicht einfaches Beispiel

Prof. Dr.
Stephan Kleuker

483OOAD

Refactoring – (nicht) einfaches Beispiel in C++

int Rechnung::ref2(int x){
 int a = 0;
 int b = 0;
 int c = 0;
 if (x > 0) {
 abcAnpassen(a, b, c, x);
 }
 return a + b + c;
}

void Rechnung::abcAnpassen(int& a, int& b, int& c, int x){
 a = x;
 b = x;
 c = x;
}

Prof. Dr.
Stephan Kleuker

484OOAD

Domain Specific Languages (DSL)

• Problem: General Purpose Sprachen sind sehr mächtig, aber für
spezifische Entwicklungsbereiche geht sehr viel Energie in für
den Bereich gleichartige Programmierung

• Spezielle Entwicklungssprache für individuellen Bereich,
spezielle komplexe Hochsprachelemente anbietet

• Neue Sprache z. B. mit XML (Syntax mit XML-Schema)
darstellbar; Umwandlung in Programm mit Übersetzung (z. B.
XSLT) ; hilfreich ist Visualisierungsmöglichkeit der DSL

• Hinweis: UML (evtl. mit konkreter Ausprägung) kann mit MDA-
Transformationen auch als spezieller DSL-Ansatz angesehen
werden

9.8

Prof. Dr.
Stephan Kleuker

485OOAD

DSL Prozesse

Prof. Dr.
Stephan Kleuker

486OOAD

Model Driven Architecture
• Ansatz: Häufig benötigt man die gleichen Ideen (z. B.

Sortierverfahren) in sehr unterschiedlichen Sprachen; warum
nicht in einer Sprache modellieren und dann in andere
Sprachen transformieren?

• Da Sprachen extrem unterschiedlich, soll Modellumwandlung
schrittweise passieren

• Zur Modellbeschreibung wird eigene Sprache mit eigener
Semantik benötigt (Metamodell und Metametamodell)

• Ansatz: Umwandlung des CIM mit Transformationsregeln in ein
PIM und dann ein PSM
 CIM: Computer Independent Model

 PIM: Platform Independent Model
 PSM: Platform Specific Model
• z. B. UML-Modell, dann Realisierungssprache wählen, dann

HW-Plattform mit Kommunikationsprotokollen wählen (zwei
parametrisierte Transformationen)

9.9

Prof. Dr.
Stephan Kleuker

487OOAD

Prozess der MDA (Theorie)

• Realität: häufig nur eine
konkrete Ebene

• viele manuelle
Einstellungen für die
Transformation

• Generieren gibt es schon
lange (YACC, Dateien zur
Beschreibung von Fenstern,
von UML zum
Programmskelett)

Prof. Dr.
Stephan Kleuker

488OOAD

Formaler Hintergrund der MDA

Modellart1 Modellart2
Transformations-

regeln

Transformations-

model

Meta Object Faciliy (MOF)

konkretes

Modell1

konkretes

Modell2

konkrete Menge von

Regeln mit konkreten

Parametern

Instanz von Instanz vonInstanz von

Semantik definiert durch

Abarbeitungsreihenfolge

Prof. Dr.
Stephan Kleuker

489OOAD

Model Driven Software Development

Verwaltung

liname:String

Element

name:String

typ:String

*

element

public class {Verwaltung.liname} {
 <foreach Element e:Verwaltung.element>
 private List<{e.typ}> {e.name};
}

Metamodell

Codegenerator

Modell

generierter Code
Verwaltung
 liname=„Hauptliste“
 Element
 name=„bestellende“
 typ=„Bestellend“
 Element
 name=„produkte“
 typ=„Produkt“

public class Hauptliste {
 private List<Bestellend> bestellende;
 private List<Produkt> produkte;
}

z. B. https://projects.eclipse.org/projects/modeling.emf.mwe

https://projects.eclipse.org/projects/modeling.emf.mwe

	Folie 1
	Folie 2: Ich
	Folie 3: Ablauf
	Folie 4: Verhaltenscodex
	Folie 5: Praktikum genauer
	Folie 6: Praktikum - Aufgabenbearbeitung
	Folie 7: Veranstaltung im Studienkontext
	Folie 8: Skript = Buch
	Folie 9: weitere Literatur
	Folie 10: Werkzeuge
	Folie 11: Inhaltsverzeichnis
	Folie 12
	Folie 13: Umfeld von SW-Projekten
	Folie 14: Prozesse in Unternehmen aus SW-Projektsicht
	Folie 15: Rollenbegriff
	Folie 16: Prozessbegriff
	Folie 17: Prozessmodellierung mit Aktivitätsdiagrammen
	Folie 18: Parallelität in Prozessen
	Folie 19: Beteiligte, Produkte, Werkzeuge (optional)
	Folie 20: Anmerkungen
	Folie 21: Beispiel: Vertrieb (1/4)
	Folie 22: Beispiel: Vertrieb (2/4)
	Folie 23: Beispiel: Vertrieb (3/4)
	Folie 24: Beispiel: Vertrieb (4/4)
	Folie 25: Prozessverfeinerung: Kosten kalkulieren
	Folie 26: Modellierungsfalle
	Folie 27: Modellierungsvarianten
	Folie 28: Problem Lesbarkeit
	Folie 29: Problem Abstraktionsgrad
	Folie 30
	Folie 31: Historie des SW-Engineering (1/4)
	Folie 32: Historie des SW-Engineering (2/4)
	Folie 33: Historie des SW-Engineering (3/4)
	Folie 34: Historie des SW-Engineering (4/4)
	Folie 35: Warum scheitern SW-Projekte (kleine Auswahl)
	Folie 36: Antworten des Software-Engineering
	Folie 37: Definitionsversuch Software-Engineering
	Folie 38
	Folie 39: Die Phasen der SW- Entwicklung
	Folie 40: Wasserfallmodell
	Folie 41: Prototypische Entwicklung
	Folie 42: Iterative Entwicklung
	Folie 43: Fertigstellung mit Iterationen
	Folie 44: Iterativ Inkrementelle Entwicklung (State of the Art)
	Folie 45: Agile Methoden – Beispiel Scrum
	Folie 46
	Folie 47: so nicht (1/4): Beispiel-Szenario
	Folie 48: so nicht (2/4): Die Projektplanung
	Folie 49: so nicht (3/4): Die Schritte zum Projektmisserfolg
	Folie 50: so nicht (4/4): so doch, Geschäftsprozessanalyse
	Folie 51: Einschub: Swimlanes (1/2)
	Folie 52: Einschub: Swimlanes (2/2)
	Folie 53: Aufgabe der Anforderungsanalyse
	Folie 54: Probleme mit Anforderungen an große Systeme
	Folie 55: Checkliste zum Finden von Stakeholdern (1/3) [RS]
	Folie 56: Checkliste zum Finden von Stakeholdern (2/3)
	Folie 57: Checkliste zum Finden von Stakeholdern (3/3)
	Folie 58: Regeln für die Definition von Zielen
	Folie 59: Schablone zur Zielbeschreibung
	Folie 60: Projektbeschreibung
	Folie 61: Ziele für eine Projektmanagementsoftware (1/3)
	Folie 62: Ziele für eine Projektmanagementsoftware (2/3)
	Folie 63: Ziele für eine Projektmanagementsoftware (3/3)
	Folie 64: Rahmenbedingungen und weiteres Vorgehen
	Folie 65: Überblick über den Analyseprozess
	Folie 66: Erfragung des WAS?
	Folie 67: Use Case (Anwendungsfall)
	Folie 68: Business Use Case [OW]
	Folie 69: System Use Case [OW]
	Folie 70: Zusammenhang der Use Case Arten
	Folie 71: Wege zur Use Case-Ermittlung
	Folie 72: Darstellungsbeispiel: Business-Netzwerk
	Folie 73: Systematische Use-Case Ermittlung (1/4)
	Folie 74: Systematische Use-Case Ermittlung (2/4)
	Folie 75: Systematische Use-Case Ermittlung (3/4)
	Folie 76: Systematische Use-Case Ermittlung (4/4)
	Folie 77: Abgeleitetes Use Case-Diagramm
	Folie 78: Use Case-Erstellung genauer
	Folie 79: Verfeinerung der Use Case-Dokumentation
	Folie 80: Dokumentationsschablone für Use Cases (1/3)
	Folie 81: Dokumentationsschablone für Use Cases (2/3)
	Folie 82: Dokumentationsschablone für Use Cases (3/3)
	Folie 83: Beispielbeschreibung (1/2)
	Folie 84: Beispielbeschreibung (2/2)
	Folie 85: Hinweise zu Use Cases (1/2)
	Folie 86: Hinweise zu Use Cases (2/2)
	Folie 87: Analyse von Use-Case-Dokumentationen
	Folie 88: Beispiel zu <<include>>
	Folie 89: <<extend>>
	Folie 90: Hinweis zu <<include>>, <<extend>> (persönlich)
	Folie 91: weiteres Use Case – Diagramm: Online-Autobörse
	Folie 92: Beschreibung verschiedener Abläufe
	Folie 93: Modellierungsrichtlinie für Aktivitätsdiagramme
	Folie 94: Aktivitätsdiagramm mit typischen Ablauf
	Folie 95: Aktivitätsdiagramm um Alternativen ergänzt
	Folie 96: Erinnerung: Modellierung aus Business-Sicht
	Folie 97: Modellierung aus System-Sicht
	Folie 98: n+1 Aktivitätsdiagramme (1/2)
	Folie 99: n+1 Aktivitätsdiagramme (2/2)
	Folie 100: Formulierung von Anforderungen
	Folie 101: Sprache als Darstellungsmittel
	Folie 102: Glossar
	Folie 103: Probleme mit natürlich-sprachlichen Formulierungen
	Folie 104: Definition: Tilgung
	Folie 105: Beispiele für Tilgungen (1/2)
	Folie 106: Beispiele für Tilgungen (2/2)
	Folie 107: Definition: Generalisierung
	Folie 108: Generalisierung durch Universalquantoren
	Folie 109: Beispiele für Generalisierungen
	Folie 110: Definition: Verzerrung
	Folie 111: Verzerrung: Beispiele und Analyse
	Folie 112: Verzerrung durch Nominalisierung
	Folie 113: Erkennen von Nominalisierungen
	Folie 114: Entwicklung strukturierter Anforderungen
	Folie 115: Charakterisierung von Systemaktivitäten
	Folie 116: Visualisierung der Systemaktivitäten
	Folie 117: Anforderungsformulierung (Rupp-Schablone)
	Folie 118: Typ 1: Selbständige Systemaktivität
	Folie 119: Typ 2: Nutzungsinteraktion
	Folie 120: Typ 3: Schnittstellenanforderung
	Folie 121: Vom Aktivitätsdiagramm zur textuellen Anforderung
	Folie 122: Beispielübersetzung (Fragment)
	Folie 123: Nicht-funktionale Anforderungen (1/2) [sehr kurz]
	Folie 124: Nicht-Funktionale Anforderungen (2/2)
	Folie 125: Varianten der Anforderungsermittlung (1/3)
	Folie 126: Varianten der Anforderungsermittlung (2/3)
	Folie 127: Varianten der Anforderungsermittlung (3/3)
	Folie 128: Lastenheft / Pflichtenheft
	Folie 129: Lastenheft / Pflichtenheft: möglicher Aufbau
	Folie 130
	Folie 131: Systemarchitektur
	Folie 132: Klassenmodellierung für OO-Programmier*innen
	Folie 133: Modellierungsaufgabe
	Folie 134: Erinnerung: Java-Grundregeln für Klassen
	Folie 135: Klasse Mitarbeitend (1/3)
	Folie 136: Klasse Mitarbeitend (2/3)
	Folie 137: Klasse Mitarbeitend (3/3)
	Folie 138: Inkrementelle Entwicklung mit UML
	Folie 139: Dynamische Modellierung mit Sequenzdiagrammen
	Folie 140: Algorithmen mit Sequenzdiagrammen
	Folie 141: Zusammenhang: Programm und Sequenzdiagramm
	Folie 142: Mitarbeitend-Objekt hat Sammlung von Fähigkeiten
	Folie 143: Sammlungen in Klassendiagrammen
	Folie 144: Assoziation genauer
	Folie 145: neues Mitarbeitend-Objekt mit Faehigkeiten
	Folie 146: neues Mitarbeiten-Objekt mit Faehigkeiten - genauer
	Folie 147: Wer erstellt Mitarbeitend-Objekte
	Folie 148: MitarbeitendController in Java (1/2)
	Folie 149: MitarbeitendController in Java (2/2)
	Folie 150: Modellierung: MitarbeitendController
	Folie 151: Mitarbeitend-Objekt mit Fähigkeiten anlegen
	Folie 152: Einschub: Programmzeilen des Grauens
	Folie 153: Projekte mit beliebig vielen Mitarbeitend-Objekten
	Folie 154: Design-Entscheidung über Modellierung hinaus
	Folie 155: Jedes Projekt kann einen Scrum-Master haben
	Folie 156: ProjektController
	Folie 157: neues Projekt mit Master erzeugen
	Folie 158: Erweiterung: Mitarbeitend-Objekt anteilig zuordnen
	Folie 159: Standardlösung: Koppelentität
	Folie 160: Mitarbeitend-Objekt zum Projekt hinzufuegen
	Folie 161: Zwischenstand zum Zoomen
	Folie 162: Flexibilisierung mit Interfaces
	Folie 163: Interface in UML
	Folie 164: Teilimplementierung
	Folie 165: Zwischenfazit
	Folie 166: Beispiel für Design-Idee (1/5)
	Folie 167: Beispiel für Design-Idee (2/5)
	Folie 168: Beispiel für Design-Idee (3/5)
	Folie 169: Beispiel für Design-Idee (4/5)
	Folie 170: Beispiel für Design-Idee (5/5)
	Folie 171: Typisches Sequenzdiagramm
	Folie 172: Beispiel: Initialisierung
	Folie 173: Beispiel: Anstoß der Funktionalität
	Folie 174: Beispiel: Projektstrukturplan
	Folie 175: Erste Iteration: Klassen finden
	Folie 176: Analyse der Anforderungen – Ausschnitt 1. Iteration
	Folie 177: UML-Notation
	Folie 178: Zusammenhang Klasse und Objekt
	Folie 179: Tracing-Information (was wo) festhalten
	Folie 180: UML unterstützt iteratives Vorgehen
	Folie 181: 2. Iteration: Methoden suchen
	Folie 182: Beispiel: zweite Analyse der Anforderungen
	Folie 183: Klassendiagramm
	Folie 184: Vererbung
	Folie 185: Beispiel: Vererbung
	Folie 186: Klassen: von Analyse zum Design
	Folie 187: Validierung mit Sequenzdiagrammen
	Folie 188: Darstellungsvarianten in Sequenzdiagrammen
	Folie 189: Iterative Entwicklung und Validierung
	Folie 190: Zusammenhang zwischen Aktivitäts- und Sequenzdiagrammen
	Folie 191: Iterative Entwicklung eines Sequenzdiagramms
	Folie 192: Highlevel-Sequenzdiagramme (nur Ausblick)
	Folie 193: Beispiel: Fertigstellungsgrad berechnen
	Folie 194: Beispiel: Prüfung Aufwandsänderung Projektaufgabe
	Folie 195: Sequenzdiagramm – Detailgrad (1/3)
	Folie 196: Sequenzdiagramm – Detailgrad (2/3)
	Folie 197: Sequenzdiagramm – Detailgrad (3/3)
	Folie 198: Sequenzdiagramm und Kommunikationsdiagramm
	Folie 199: GUI-Modellierung
	Folie 200: Erweiterung mit Boundary-Klassen
	Folie 201: Sequenzdiagramm mit Nutzungsdialog
	Folie 202: Anforderungsverfolgung
	Folie 203: Anforderungsverfolgung - Beispielzusammenhänge
	Folie 204
	Folie 205: Analyse des Ist-Standes
	Folie 206: UML-Toolsuiten / CASE-Werkzeuge
	Folie 207: Übersetzung einfacher Diagramme (1/4)
	Folie 208: Übersetzung einfacher Diagramme (2/4)
	Folie 209: Übersetzung einfacher Diagramme (3/4)
	Folie 210: Übersetzung einfacher Diagramme (4/4)
	Folie 211: Notwendige Code-Ergänzung durch Entwicklung
	Folie 212: Umgang mit Assoziationen im Design
	Folie 213: Multiplizität 1
	Folie 214: Multiplizität n (1/2)
	Folie 215: Multiplizität n (2/2)
	Folie 216: Collections in UML
	Folie 217: Collections in der Programmierung
	Folie 218: Qualifizierte Assoziationen
	Folie 219: Arten der Zugehörigkeit (Aggregation 1/2)
	Folie 220: Arten der Zugehörigkeit (Aggregation 2/2)
	Folie 221: Arten der Zugehörigkeit (Komposition 1/2)
	Folie 222: Arten der Zugehörigkeit (Komposition 2/2)
	Folie 223: Kurzzeitige Klassennutzungen
	Folie 224: Erstellen einer Softwarearchitektur
	Folie 225: Systematische Entwicklung komplexer Systeme
	Folie 226: Typische 3-Schichten-SW-Architektur
	Folie 227: Beispiel: grobe Paketierung (eine Variante)
	Folie 228: Beispiel: grobe Paketierung (zweite Variante)
	Folie 229: Forderung: azyklische Abhängigkeitsstruktur
	Folie 230: Umsetzung von Paketen in Java und C++
	Folie 231: Paketnamen und Strukturierungsmöglichkeiten
	Folie 232: Paketabhängigkeiten optimieren
	Folie 233: Trick: Abhängigkeit umdrehen
	Folie 234: Architektursichten
	Folie 235: 4+1 Sichten
	Folie 236: 4+1 Sichten mit (Teilen der) UML
	Folie 237: Ablaufsicht
	Folie 238: Implementierungssicht
	Folie 239: Komponentendiagramm
	Folie 240: Physische Sicht: vorgegebene HW mit Vernetzung
	Folie 241: Java Module (1/7)
	Folie 242: Java Module (2/7) – Modul Deskriptor module-info.java
	Folie 243: Java Module (3/7) – Beispiel Klassendiagramm
	Folie 244: Java Module (4/7) – in Eclipse
	Folie 245: Java Module (5/7) – Modul-Deskriptoren
	Folie 246: Java Module (6/7) – Module Arten
	Folie 247: Java Module (7/7) – kritische Analyse
	Folie 248
	Folie 249: Zentrale Aufgabe: von Analyse zum Design (1/2)
	Folie 250: Zentrale Aufgabe: von Analyse zum Design (2/2)
	Folie 251: Einschub: Coding-Guidelines
	Folie 252: Einfache Basisregeln
	Folie 253: Keine allwissenden Klassen
	Folie 254: „Verpacken“ von Exemplarvariablen (Aggregation)
	Folie 255: Erinnerung: Bedeutung von Schnittstellen
	Folie 256: zentrale Folie: Design by Contract
	Folie 257: Grundidee von Design-Pattern
	Folie 258: Model-View-Controller
	Folie 259: MVC – einfacher Kommunikationsablauf
	Folie 260: MVC: was bei mehreren Views
	Folie 261: MVC: mehrere Views
	Folie 262: MVC: Model hält Sammlung angeschlossener Views
	Folie 263: MVC: Model hält Sammlung angeschlossener Views
	Folie 264: Java-Beispiel zum MVC (1/7)
	Folie 265: Java-Beispiel zum MVC (2/7)
	Folie 266: Java-Beispiel zum MVC (3/7)
	Folie 267: Java-Beispiel zum MVC (4/7)
	Folie 268: Java-Beispiel zum MVC (5/7)
	Folie 269: Java-Beispiel zum MVC (6/7)
	Folie 270: Java-Beispiel zum MVC (7/7)
	Folie 271: Mehrere Views – mehrere Controller – ein Model
	Folie 272: Pattern-Varianten
	Folie 273: Ablaufvariante: Controller managt alles
	Folie 274: Variante der Ablaufvariante: Controller managt alles
	Folie 275: MVC als Design-Konzept
	Folie 276: Ansatz Observer-Observable
	Folie 277: Beobachter (Observer – Observable)
	Folie 278: Beobachter – Beispielaufgabe (1/5)
	Folie 279: Beobachter – Beispielaufgabe (2/5)
	Folie 280: Beobachter – Beispielaufgabe (3/5)
	Folie 281: Beobachter – Beispielaufgabe (4/5)
	Folie 282: Beobachter – Beispielaufgabe (5/5)
	Folie 283: Pattern und Varianten
	Folie 284: Adapter - Problem
	Folie 285: Adapter - Lösung
	Folie 286: Fassade nach außen
	Folie 287: Einsatzmöglichkeiten von Sichtbarkeiten
	Folie 288: Singleton (1/3)
	Folie 289: Singleton (2/3)
	Folie 290: Singleton (3/3)
	Folie 291: Decorator (1/9)
	Folie 292: Decorator (2/9)
	Folie 293: Decorator (3/9)
	Folie 294: Decorator (4/9)
	Folie 295: Decorator (5/9)
	Folie 296: Decorator (6/9)
	Folie 297: Decorator (7/9) – etwas mehr Effekt (1/2)
	Folie 298: Decorator (8/9) – etwas mehr Effekt (2/2)
	Folie 299: Decorator (9/9) – sind verknüpfbar
	Folie 300: Proxy
	Folie 301: Proxy – Implementierungsmöglichkeit (1/3)
	Folie 302: Proxy – Implementierungsmöglichkeit (2/3)
	Folie 303: Proxy – Implementierungsmöglichkeit (3/3)
	Folie 304: Proxy, Decorator – Verwandt, aber anderer Einsatz (1/2)
	Folie 305: Proxy, Decorator – Verwandt, aber anderer Einsatz (2/2)
	Folie 306: Strategy - Problem
	Folie 307: Strategy - Lösungsbeispiel
	Folie 308: State-Pattern (eine eigene Variante)
	Folie 309: State-Pattern – Implementierungsauszug (1/3)
	Folie 310: State-Pattern – Implementierungsauszug (2/3)
	Folie 311: State-Pattern – Implementierungsauszug (3/3)
	Folie 312: Umsetzung klassischer endlicher Automaten
	Folie 313: Command-Pattern
	Folie 314: Bild aus der Literatur
	Folie 315: Beispiel 1/13 : Rechner 1/2
	Folie 316: Beispiel 2/13 : Rechner 2/2
	Folie 317: Beispiel 3/13 : Klassischer Dialog 1/2
	Folie 318: Beispiel 4/13 : Klassischer Dialog 2/2
	Folie 319: Beispiel 5/13 : Funktioniert immerhin
	Folie 320: Beispiel 6/13 : Ansatz: Steuerungsklassen
	Folie 321: Beispiel 7/13 : Pattern-Nutzung
	Folie 322: Beispiel 8/13 : Umsetzung 1/3
	Folie 323: Beispiel 9/13 : Umsetzung 2/3 (Varianten -> Praktikum)
	Folie 324: Beispiel 10/13 : Umsetzung 3/3
	Folie 325: Beispiel 11/13 : Undo
	Folie 326: Beispiel 12/13 : Variante Undo-Methode
	Folie 327: Beispiel 13/13 : Variante Undo-Objekte (Skizze)
	Folie 328: Fazit Command-Pattern
	Folie 329: Visitor Pattern (1/5) - Idee
	Folie 330: Visitor Pattern (2/5) - Ansatz
	Folie 331: Visitor Pattern (3/5) - Umsetzung
	Folie 332: Visitor Pattern (4/5) - Nutzung
	Folie 333: Visitor Pattern (5/5) - Diskussion
	Folie 334: Verantwortlichkeitsmuster – GRASP-Pattern
	Folie 335: Muster: Experte
	Folie 336: Beispiel: Expert (Fachwissen)
	Folie 337: Muster: Creator
	Folie 338: Beispiel: Creator (1/2)
	Folie 339: Beispiel: Creator (2/2)
	Folie 340: Muster: Geringe Kopplung
	Folie 341: Beispiel: Geringe Kopplung (1/2)
	Folie 342: Beispiel: Geringe Kopplung (2/2)
	Folie 343: Muster: hoher Zusammenhalt
	Folie 344: Beispiel: hoher Zusammenhalt
	Folie 345: Muster: Don’t Talk to Strangers
	Folie 346: Konkretisierung: Don’t Talk to Strangers
	Folie 347: Muster: Reines Kunstgebilde
	Folie 348: Beispiel: Reines Kunstgebilde
	Folie 349: Muster: Command-Query Separation
	Folie 350: Beispiel: Command-Query Separation
	Folie 351: Method Chaining (1/3)
	Folie 352: Method Chaining (2/3)
	Folie 353: Method Chaining (3/3)
	Folie 354: Beispiel: Hilfsklasse Objekterzeugung (1/4)
	Folie 355: Beispiel: Hilfsklasse Objekterzeugung (2/4)
	Folie 356: Beispiel: Hilfsklasse Objekterzeugung (3/4)
	Folie 357: Beispiel: Hilfsklasse Objekterzeugung (4/4)
	Folie 358: Erinnerung: clone(), Erzeugung echter Kopien (1/4)
	Folie 359: Erinnerung: clone(), Erzeugung echter Kopien (2/4)
	Folie 360: Erinnerung: clone(), Erzeugung echter Kopien (3/4)
	Folie 361: Erinnerung: clone(), Erzeugung echter Kopien (4/4)
	Folie 362: Kombination von Pattern: Beispiel Redux
	Folie 363: Redux – Konzept Version 0 (1/2)
	Folie 364: Redux – Konzept Version 0 (2/2)
	Folie 365: Redux – Konzept Version 1 (1/12)
	Folie 366: Redux – Konzept Version 1 (2/12)
	Folie 367: Redux – Konzept Version 1 (3/12)
	Folie 368: Redux – Konzept Version 1 (4/12)
	Folie 369: Redux – Konzept Version 1 (5/12) – App (1/2)
	Folie 370: Redux – Konzept Version 1 (6/12) – App (2/2)
	Folie 371: Redux – Konzept Version 1 (7/12)
	Folie 372: Redux – Konzept Version 1 (8/12)
	Folie 373: Redux – Konzept Version 1 (9/12)
	Folie 374: Redux – Konzept Version 1 (10/12)
	Folie 375: Redux – Konzept Version 1 (11/12)
	Folie 376: Redux – Konzept Version 1 (12/12)
	Folie 377: Redux – Konzept Version 2 (1/11)
	Folie 378: Redux – Konzept Version 2 (2/11)
	Folie 379: Redux – Konzept Version 2 (3/11)
	Folie 380: Redux – Konzept Version 2 (4/11)
	Folie 381: Redux – Konzept Version 2 (5/11)
	Folie 382: Redux – Konzept Version 2 (6/11)
	Folie 383: Redux – Konzept Version 2 (7/11)
	Folie 384: Redux – Konzept Version 2 (8/11)
	Folie 385: Redux – Konzept Version 2 (9/11)
	Folie 386: Redux – Konzept Version 2 (10/11)
	Folie 387: Redux – Konzept Version 2 (11/11)
	Folie 388: Redux – Konzept Version 3 (1/4)
	Folie 389: Redux – Konzept Version 3 (2/4)
	Folie 390: Redux – Konzept Version 3 (3/4)
	Folie 391: Redux – Konzept Version 3 (4/4)
	Folie 392: Redux – Fazit
	Folie 393: Beschreibung der Pattern
	Folie 394: GoF-Pattern Übersicht (nicht auswendig lernen)
	Folie 395: Pattern in der UML
	Folie 396: Kritische Betrachtung von Pattern
	Folie 397: Patternorientierte Konzepte in der Programmierung
	Folie 398: Java 8 – Functional Interfaces (1/3)
	Folie 399: Java 8 – Functional Interfaces (2/3) – mit Lambda
	Folie 400: Java 8 – Functional Interfaces (3/3) – mit Lambda
	Folie 401: Optional (1/5)
	Folie 402: Optional (2/5) – Problem mit null (1/2)
	Folie 403: Optional (3/5) – Problem mit null (2/2)
	Folie 404: Optional (4/5) – Problemlösung (1/2)
	Folie 405: Optional (5/5) – Problemlösung (2/2)
	Folie 406: Streams ab Java 8
	Folie 407: Streams (1/14): POJO-Klasse (1/2)
	Folie 408: Streams (2/14): POJO-Klasse (2/2)
	Folie 409: Streams (3/14): Ausführungsrahmen
	Folie 410: Streams (4/14): Erzeugung und einfache Nutzung
	Folie 411: Streams (5/14): Lambda - Beispiele
	Folie 412: Streams (6/14): Möglichkeit zur Parallelisierung
	Folie 413: Streams (7/14): Filterung
	Folie 414: Streams (8/14): Filterung genauer (Einschub)
	Folie 415: Streams (9/14): Abbildung / Umwandlung (map)
	Folie 416: Streams (10/14): Detailanalyse
	Folie 417: Streams (11/14): Lazy Evaluation
	Folie 418: Streams (12/14): Zusammenfassung (reduce)
	Folie 419: Streams (13/14): Gruppierung
	Folie 420: Streams (14/14): viele weitere Möglichkeiten
	Folie 421: Dependency Injection
	Folie 422: Dependency Injection - Beispiel
	Folie 423: CDI – Minibeispiel (1/4)
	Folie 424: CDI – Minibeispiel (2/4)
	Folie 425: CDI – Minibeispiel (3/4)
	Folie 426: CDI – Minibeispiel (4/4)
	Folie 427: Java Module (1/5) – Services – Beispiel für Strategy
	Folie 428: Java Module (2/5) - Beispiel
	Folie 429: Java Module (3/5) – module-info.java Dateien
	Folie 430: Java Module (4/5) - Nutzung
	Folie 431: Java Module (5/5) – Variante Factory
	Folie 432: Nutzung von Komponenten
	Folie 433: Validierungs-Framework (Bean Validation 1.1, JSR 349)
	Folie 434: Beispielnutzung der Validierung
	Folie 435: Persistenz-Framework (JPA 2.1, JSR 338)
	Folie 436: Beispielnutzung der Persistenz
	Folie 437
	Folie 438: Verfeinerte Modellierung
	Folie 439: Zustandsdiagramme
	Folie 440: Struktur von Zustandsdiagrammen
	Folie 441: Beispiel: Zustandsdiagramm eines Projekts
	Folie 442: Hierarchische Zustände
	Folie 443: Parallele Unterzustände
	Folie 444: Beispiel: Uhr
	Folie 445: Zustandsmodellierung und Realzeitsysteme
	Folie 446: Event [Condition] / Action
	Folie 447: Microsteps und Macrosteps (1/2)
	Folie 448: Microsteps und Macrosteps (2/2)
	Folie 449: Beispiel: Start-Stopp-Automatik (1/4)
	Folie 450: Beispiel: Start-Stopp-Automatik (2/4)
	Folie 451: Beispiel: Start-Stopp-Automatik (3/4)
	Folie 452: Beispiel: Start-Stopp-Automatik (4/4)
	Folie 453: Umsetzung von Zustandsdiagrammen
	Folie 454: GUI als Zustandsautomat
	Folie 455: Android als Zustandsdiagramm
	Folie 456: Klassendiagramm und versteckte Randbedingungen
	Folie 457: Grundidee von Object Constraint Language (OCL)
	Folie 458: Einfache Bedingungen für Objekte (Invarianten)
	Folie 459: Vor- und Nachbedingungen für Methoden
	Folie 460: Einschub: Basistypen und Operationen
	Folie 461: Zugriff auf Assoziationen
	Folie 462: Assoziationsklassen
	Folie 463: Beispiele: Mengenoperationen (1/2)
	Folie 464: Beispiele: Mengenoperationen (2/2)
	Folie 465
	Folie 466: Beispiel: Rahmenbedingungen für SW-Architektur
	Folie 467: Einfluss nichtfunktionaler Anforderungen
	Folie 468: Rahmenbedingung: verteilte Systeme
	Folie 469: Probleme der Aufrufmechanismen
	Folie 470: Typische Probleme verteilter Systeme
	Folie 471: Beispiel: Varianten von Client-Server-Systemen
	Folie 472: Beispiel: 3-Tier-Architektur
	Folie 473: Nutzung von Programmbibliotheken
	Folie 474: Idee von Komponenten
	Folie 475: Idee der Framework-Technologie
	Folie 476: Ziele komplexere Framework-Ansätze
	Folie 477: Persistente Datenhaltung
	Folie 478: Beispiel: JavaBeans (kleiner Ausschnitt)
	Folie 479: XMLEncoder und XMLDecoder (Ausschnitt)
	Folie 480: Refactoring
	Folie 481: Refactoring – Positives Beispiel
	Folie 482: Refactoring – nicht einfaches Beispiel
	Folie 483: Refactoring – (nicht) einfaches Beispiel in C++
	Folie 484: Domain Specific Languages (DSL)
	Folie 485: DSL Prozesse
	Folie 486: Model Driven Architecture
	Folie 487: Prozess der MDA (Theorie)
	Folie 488: Formaler Hintergrund der MDA
	Folie 489: Model Driven Software Development

