Video

Objektorientierte Analyse und
Design

Prof. Dr. Stephan Kleuker

Kernziele:

e Strukturen fir erfolgreichen SW-Entwicklungsprozess
kennen lernen

e Realisierung: Von der Anforderung zur Implementierung

00AD Prof. Dr.
Stephan Kleuker

https://youtu.be/QlnyKi42TwM

»-
lch e

e Prof. Dr. Stephan Kleuker, geboren 1967, verheiratet, 2
Kinder

e seit 1.9.09 an der FH, Professur flur Software-Entwicklung
e vorher 4 Jahre FH Wiesbaden
e davor 3 Jahre an der privaten FH Nordakademie in EImshorn

e davor 4 % Jahre tatig als Systemanalytiker und
Systemberater in Wilhelmshaven

e s.kleuker@hs-osnabrueck.de, Zoom-Termine kurzfristig per
E-Mail vereinbar

Prof. Dr. 2
Stephan Kleuker

OOAD

- >
Ablauf

e 2h Vorlesung + 2h Praktikum = 5CP
e Praktikum (3er oder 4er Gruppen):

— Anwesenheit = (Ubungsblatt vorliegen + Lésungsversuche
zum vorherigen Aufgabenblatt + Fragen)

— 11 Ubungsblatter mit insgesamt ca. 100 Punkten
— Praktikum mit 85 oder mehr Punkten bestanden
e Prifung: Hausarbeit, 3/4er-Gruppen, Themen s. Webseite

e steuern Sie lhr Lerntempo mit den Videos selbst (Pausetaste)
e von Studierenden wird hoher Anteil an Eigenarbeit erwartet

e Melden Sie sich in ILIAS zu VL und Praktikum an, Freischaltung
sollte erfolgt sein

e Praktikum startet ,sofort” an nachsten geplanten Termin

0O0AD Prof. Dr. 3
Stephan Kleuker

Verhaltenscodex

Vorlesung bis vorgegebenen Vorlesungsende durcharbeiten;
sinnvoll eher fertig sein, um frih Fragen stellen zu konnen

Folienveranstaltungen sind schnell, bremsen Sie mit der Stopp-
Taste, sehen sie in Gruppen, diskutieren Sie gesehenes, stellen
Sie Fragen, die noch beantwortet werden sollen

Fragen zur Vorlesungszeit oder sonst per E-Mail
von Studierenden wird hoher Anteil an Eigenarbeit erwartet

spatestens zwei Tage vor der VL liegen abends Unterlagen im
Netz http://kleuker.iui.hs-osnabrueck.de/index.html

Probleme sofort melden
Wer aussteigt teilt mit warum

00AD Prof. Dr. 4

Stephan Kleuker

http://kleuker.iui.hs-osnabrueck.de/index.html

Praktikum genauer s

e Praktikumsaufgaben mussen jeweils als Ergebnisse im Praktikum
der Folgewoche vorliegen; diese werden dort abgenommen

e Falls jemand nicht kommt, sind die Ergebnisse per E-Mail
spatestens am Praktikumstag an den Praktikumsleiter zu
schicken; werden in der Folgewoche abgenommen

e Aufgaben dirfen in Gruppen von maximal vier (minimal drei)
Studierenden bearbeitet werden; jeder muss in der Lage sein,
jedes Gruppenergebnis vorzustellen (gerade auch bei evtl.
spateren Abnahmen)

e Treten ahnliche Ergebnisse bei mehr als einer Arbeitsgruppe auf,
werden diese bei allen Arbeitsgruppen gestrichen

e Kl-Unterstltzung ist zu dokumentieren /was/wo/warum)

e bei Losungen aus dem Internet oder durch Kl ist das Praktikum

beendet
00AD Prof. Dr. 5

Stephan Kleuker

Praktikum - Aufgabenbearbeitung o o

e Bearbeitung in 3er/4er-Gruppen
e sinnvoll: Pairprogramming, zwei Personen an einem Rechner
e Ansatz: eigene Tastatur und Maus mitbringen

USB-Stick
(lokaler

Speicher),
neben Z:

private
Tastatur

und Maus
von Studi

0O0AD Prof. Dr. 6
Stephan Kleuker

Veranstaltung im Studienkontext

+ Sie haben Kenntnisse in der OO-Programmierung (C++, Java)
+ [Sie kdnnen Datenbanken (Uberschneidung bei Modellierung)]

= Sie konnen erfolgreich an dieser Veranstaltung teilnehmen

+ nachstes Semester: Veranstaltung Software-Engineering Projekt
(Vorlesungsanteil zur Organisation von SW-Projekten in
Unternehmen, groRes Praktikumsprojekt, 10 CP)

00AD Prof. Dr. 7
Stephan Kleuker

Skript = Buch

Hinweis:

Aktuelle Bicher des
Springer-Verlags
Kénnen tber Web-
Seite der Bibliothek
als PDF legal
heruntergeladen
werden,
Fachdatenbanken
(DBIS)

OOAD

Stephan Kleuker

Grundkurs
Software-Engineering

mit UML

5. Auflage

@ Springer Vieweg

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

weitere Literatur

Generell lesenswert:

e Jochen Ludewig, Horst Lichter, Software Engineering:
Grundlagen, Menschen, Prozesse, Techniken, dpunkt.verlag,
Heidelberg

e Bernd Oestereich, Axel Scheithauer, Analyse und Design mit
UML 2.5, Oldenbourg, Mlnchen

e C.Rupp, S. Queins, B. Zengler, UML 2 glasklar, Hanser,
Miinchen Wien

e |an Sommerville, Software Engineering, Addison Wesley,
Boston

e (jeweils aktuellste Auflage)
e Spezialliteratur wird zum jeweiligen Kapitel genannt

00AD Prof. Dr. 9
Stephan Kleuker

Werkzeuge

Programmierung mit Eclipse, Modellierung mit UMLet
http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf

UMLet ist (fast) reines Malwerkzeug fiir verschiedene UML-
Diagrammarten (etwas instabiler unter Linux)

gibt SEU auf HS-Rechner identisch fiir zu Hause C:\kleukersSEU; ist
verpflichtend zu nutzen

gibt professionellere Werkzeuge, die aber nicht generell frei
verfligbar sind (jedes Unternehmen kocht hier seinen eigenen
,Werkzeugbrei“ zusammen)

Bedeutung der Diagramme im Entwicklungsprozess unterschiedlich
(,fokussiert auf aktuelle UML-Diagramme® oder nur ,zentrales
Hilfsmittel fur Skizzen®)

OO0AD Prof. Dr. 10

Stephan Kleuker

http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf

Inhaltsverzeichnis

I 2 Prozessmodellierung
& 1 Motivation von Software-Engineering
—— AR RO O S ——— (2 genaver
I 4 Anforderungsanalyse s Semestet
1 5 Grobdesign
= 6 Vom Klassendiagramm zum Programm
1 8 Optimierung des Designmodells
1 7 Konkretisierungen im Feindesign
1 9 Implementierungsaspekte

—O—Oeriitchensestaliti— andere Veranstaltung
- Crrattttestehet i —
T IZ oMo Softrare et e S — néchSteS

Semester

00AD Prof. Dr. 11
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

2. Prozessmodellierung

M 2.1 Unternehmensprozesse
1 2.2 Prozessmodellierung mit Aktivitatsdiagrammen

0O0AD Prof. Dr. 12
Stephan Kleuker

https://youtu.be/3YhXjxLy5xI

Umfeld von SW-Projekten

HHHHHHHHHHHHHHHHHHH

2.1
Unternehmensfiihrung
Unterstutzung
Vertrieb
Projektmanagement
SW-Projekt
Controlling
OO0AD Prof. Dr.

Stephan Kleuker

13

Prozesse in Unternehmen aus SW-Projektsicht

(Annahme SW ist wichtiges Kernprodukt)
e Unternehmensfiuhrung gibt Geschaftsfelder und Strategien vor

e Vertriebsleute miissen potenzielle auftraggebende Firmen
finden, Uberzeugen und Auftrage generieren

e Auftrage fihren zu Vertragen, die gepruft werden mussen

e Das Personal fur Auftrage muss ausgewahlt werden und zur
Verfigung stehen

e Der Projektablauf muss beobachtet werden, Abweichungen z.
B. in Zeitplan mussen zu Steuerungsmalinahmen fiihren

e Die SW muss realisiert werden

0O0AD Prof. Dr. 14
Stephan Kleuker

Rollenbegriff

e Unterschiedliche Menschen arbeiten in verschiedenen Rollen
zusammen

e Rolle: genaue Aufgabenbeschreibung, mit Verantwortlichkeiten
(was soll gemacht werden) und Kompetenzen (welche
Entscheidungen konnen getroffen werden, z. B. , Arbeit
anweisen”

e Mensch kann in einem Unternehmen/Projekt mehrere Rollen
haben

e Eine Rolle kann von mehreren Menschen besetzt werden

e Beispielrollen: Vertriebsleitung, Vertriebsmitarbeit,
Projektleitung, mitarbeitende Personen in der
Anforderungsanalyse, Entwicklung, Qualitatssicherung

0O0AD Prof. Dr. 15
Stephan Kleuker

Prozessbegriff

Prozessbeschreibungen regeln die Zusammenarbeit verschiedene

Menschen (genauer Rollen),

Was soll in diesem Schritt getan werden?

Wer ist verantwortlich fir die Durchfihrung des Schritts?
Wer arbeitet in welcher Rolle in diesem Schritt mit?

Welche Voraussetzungen miussen erflllt sein, damit der Schritt
ausgefuhrt werden kann?

Welche Teilschritte werden unter welchen Randbedingungen
durchgefiihrt?

Welche Ergebnisse kann der Schritt abhangig von welchen
Bedingungen produzieren?

Welche Hilfsmittel werden in dem Prozessschritt bendtigt?
Welche Randbedingungen mussen bericksichtigt werden?
Wo wird der Schritt ausgefihrt?

Prozesse sind zu dokumentieren und zu pflegen
00AD Prof. Dr. 16

Stephan Kleuker

Prozessmodellierung mit Aktivitatsdiagrammen ... -

2.2
Zur Beschreibung werden folgende elementare Elemente genutzt:

3 genau ein Startpunkt

[.smmﬁ1;) einzelner Prozessschritt (Aktion)

[Priifung erfolgreich Priifung gescheitert) Kontrollknoten (Entscheidung)

/ ausgehenden Kanten: Boolesche
(.Emmﬂzg) [: Smmﬂai) Bedingungen in eckigen Klammern

Kontrollknoten (Zusammenfiihrung)

Endpunkt (Terminierung)

OO0AD Prof. Dr. 17
Stephan Kleuker

Parallelitat in Prozessen

HHHHHHHHHHHHHHHHHHH

e \Waagerechter oder senkrechter

OOAD

Strich steht fur mogliche
Prozessteilung (ein Pfeil rein,
mehrere raus) oder
Zusammenfuhrung (mehrere
Pfeile rein, ein Pfeil raus)

Am zusammenfihrenden Strich

steht Vereinigungsbedingung, z.

B.

— {und}: alle Aktionen
abgeschlossen

— {oder}: (mindestens) eine
Aktion abgeschlossen

UML 1.1 hatte andere

Restriktionen

Vertrag
abgeschlossen

FProjektleiter Projektteam
auswahlen auswahlen

{und}

Kick-off
vorbereiten

Prof. Dr. 18

Stephan Kleuker

Beteiligte, Produkte, Werkzeuge (optional)

Beteiligte Personen, Produkte,

Werkzeuge werden hier als
einfache Datenobjekte

modelliert, dabei steht zunachst

die Objektart und dann die
genaue Bezeichnung

In eckigen Klammern kann der

Zustand eines Objekts
beschrieben werden

neben ,verantwortlich noch

,mitwirkend” moglich

auch Entscheidungen haben

verantwortliche Personen

OOAD

Prof. Dr.

verantwortlich

Projektadministration|

Eclipseprojekt
anlegen

Produkt
Eclipseprojekt
[angelegt]

verantwortlich

Projektadministration

a

verantwortlich
Modelliererung

Stephan Kleuker

Ordner mit Namen
Analysemodell
anlegen

,

/

Produkt
Eclipseprojekt
[konfiguriert)

\

______ Analysemodell
erstellen

Produkt
Analysemodell

I

| Werkzeug
Eclipse

19

< »

Anmerkungen

e immer erst ohne "Kasten"

modellieren

e haufig alternative Eclpssprojed
Darstellungen fur Rollen anlegen
und Werkzeuge A

. . Analysemodell
in Textdokumentation anlegen

e Variante: nur Ablauf, Rest [Ordner mit Namen j

e Buch alte Version: alle

/
Linien durchgezogen Analysemodell
erstellen
00AD Prof. Dr. 20

Stephan Kleuker

Beispiel: Vertrieb (1/4) o e

Video Zu modellieren ist der Vertriebsprozess eines
Unternehmens, das SW verkauft, die individuell fur das
beauftragende Unternehmen angepasst und erweitert werden kann
Modelle werden wie SW inkrementell erstellt; zunachst der (bzw.
ein) typische Ablauf, der dann erganzt wird

Typisches Szenario: Mitarbeitende Person des Vertriebs kontaktiert
potenzielles beauftragendes Unternehmen und arbeitet individuelle
Wiinsche heraus; Fachabteilung erstellt Kostenvoranschlag;
beauftragendes Unternehmen unterschreibt Vertrag; Projekt geht in
Prozess Projektdurchfiihrung (nicht modelliert)

Beteiligt: Vertriebsmitarbeit, beauftragendes Unternehmen,
Fachabteilung

Produkt: Individualwiinsche, Kostenvoranschlag, Vertrag

Aktionen: Unternehmensgesprach, Kostenkalkulation,

Vertragsverhandlung

OO0AD Prof. Dr. 21
Stephan Kleuker

https://youtu.be/O2HCdvgs_HI

Beispiel: Vertrieb (2/4)

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

}_

Unternehmens) Produkt
gesprach) “| Individualwiinsche
/’7—‘1\\ [initial)
s \
/ \
7
/ 2 \ \/
verantwortlich mitwirkend Kosten
Vertrieb Unternehmen kalkulieren
\
Produkt
Kostenvoranschlag
: [initial)
verantwortlich
Vertrieb
N
~
mitwirkend 53
Unternehmen [~ o MR
_\ \g
@< Produkt (Vertrags-
Vertrag _ verhandlung

OOAD

Prof. Dr.
Stephan Kleuker

verantwortlich
Fachabteilung

22

Beispiel: Vertrieb (3/4)

nachster Schritt: Einbau alternativer Ablaufe
e Unternehmen ist am Angebot nicht interessiert

e |n den Vertragsverhandlungen werden neue
Rahmenbedingungen formuliert, so dass eine Nachkalkulation
notwendig wird [nachste Folie]

e Bis zu einem Vertragsvolumen von 20 T€ entscheidet die
Abteilungsleitung, dartuber die Geschaftsleitung ob
vorliegender Vertrag abgeschlossen werden soll oder
Nachverhandlungen nétig sind

e Die Fachabteilung hat Nachfragen, die die mitarbeitende
Person des Vertriebs mit dem potenziell beauftragenden
Unternehmen klaren muss

00AD Prof. Dr. 23
Stephan Kleuker

Beispiel: Vertrieb (4/4) e

Untemehmens“ ~ | Produkt
gesprach / “| Individualwiinsche

= R [initial]
£ N
7 N\
// \\ \/
verantwortlich | | mitwirkend Kosten I‘I_I | verantwortlich
Vertrieb Untemehmen kalkulieren Fachabteilung
Produkt
Kostenvoranschlag
verantwortlich [initial]
Vertrieb
N Produkt
~
mitwirkend SRS Kostenvoranschlag
Untemehmen [aktualisiert]
/
@< Produkt |_ [Vorschlag Vertrags-
S Vertrag |~ akzeptierf] verhandlung Kosten

. _ rekalkulieren
[Vorschlag night akzeptiert]
Produkt !
Individualwinsche verantwortlich
[aktualisiert] Fachabteilung
00AD Prof. Dr. 24

Stephan Kleuker

< »

Prozessverfeinerung: Kosten kalkulieren

\(Prifen, ob es sich Produkt
. um bekannte — 1 Individualwunsche
Anpassungen handelt [initial]

[Standardprodukf] X [Individualprodukt]

\I/ , Individualkalkulation
Standardk.zfalkulatlon (durchfiihren)
durchfuhren
A \

‘ Kalkulationsdatenbank
aktualisieren

! \
| = \

| \

Werkzeug Werkzeug
Kalkulationsdatenbank Kalkulationsdatenbank

Anmerkung: Verantwortliche weggelassen, da
immer ,,Projektbegleitung der Fachabteilung”

0O0AD Prof. Dr. 25
Stephan Kleuker

Modellierungsfalle

- >

HOCHSCHULE OSNABRUCK

e Basierend auf Erfahrungen mit Flussdiagrammen konnte man zu

folgender Modellierung kommen

W/

Produkt
Kostenvoranschlag

[initial]
Vertrags-
verhandlung

e 1 E-Ta Balinla)i

Produkt
Kostenvoranschlag
[aktualisiert]

M

Kosten
rekalkulieran

e Dies wurde nach UML-Semantik bedeuten, dass fur die Aktion

Vertragsverhandlung zwei Kostenvorschlage (initial und
aktualisiert, zwei eingehende Kanten) vorliegen missten

e Wenn verschiedenen Wege zu einer Aktion fihren sollen, muss
vor der Aktion ein Zusammenfihrungs-Kontrollknoten stehen

0O0AD Prof. Dr.

Stephan Kleuker

26

Modellierungsvarianten

beide Modellierungen sind aquivalent AN beide Modellierungen sind aquivalent Bl

, \ verantwortlich ;]
Aktion] [Aktion X Sl SARUON
_ = J ¢
//
\L 5 verantwortlich | | Aktion]
Produkt Produkt X
~
N
\\
\l/ N VW 7{ Aktion]
[Aktion J Aktion] verantwortlich ,//
\\ -
Produkt existiert und wird in A A[Aktion]
Aktion bearbeitet
.
Produkt [S——— | Aktion
00AD Prof. Dr. 27

Stephan Kleuker

Problem Lesbarkeit

e Diagramme koénnen leicht komplex werden
Losungsmoglichkeiten:

e Verteilung von Diagrammen auf mehrere Seiten mit
Ankerpunkten

e Verzicht, alle Elemente in einem Diagramm darzustellen (z. B.
Produkte weglassen; dies nur in der immer zu erganzenden
Dokumentation erwahnen)

e Diagramme hierarchisch gestalten; eine Aktion kann durch ein
gesamtes Aktivitatsdiagramm verfeinert werden, z. B. ist
,Kosten kalkulieren” eigener Prozess; dies sollte im Modell
sichtbar werden

0O0AD Prof. Dr. 28
Stephan Kleuker

Problem Abstraktionsgrad

e Frage: Wann nur eine Aktion, wann mehrere Aktionen
e Indikator: Mehrere Aktionen zusammenfassen, wenn

— nur ein Produkt entsteht, das ausschlielSlich in diesen Aktionen
benotigt wird (,,lokale Variable®)

— oder diese von nur einer Person/Rolle bearbeitet werden
e Typischerweise Prozesshierarchie:

— Unternehmensebene; d.h. ein Diagramm fir jeden Prozess der
Kern-, Management- und Supportprozesse

— Prozessebene: Verfeinerung des Prozesses, so dass alle nur
intern sichtbaren Rollen und Produkte sichtbar werden

— Arbeitsprozess: Individuelle Beschreibung der Arbeitsschritte
einer Rolle fur eine/ mehrere Aktionen

e Probleme: Flexibilitat und Akzeptanz

00AD Prof. Dr. 29
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

1. Motivation von Software-
Engineering

0O0AD Prof. Dr. 30
Stephan Kleuker

https://youtu.be/05wDznzSlqE

Historie des SW-Engineering (1/4)

e Ende 60er
— Bedarf fir Softwaretechnik neben der reinen

Programmierung erstmals voll erkannt (u. a. NATO Software
Engineering Conference, Garmisch, 1968)

— Vorher sind zahlreiche groRe Programmentwicklungen
(moglich durch verbesserte Hardware) gescheitert

— Arbeiten von Dijkstra 1968 (u.a. gegen Verwendung von
GOTO) und Royce 1970 (Software-Lebenszyklus),

e Top-Down-Entwurf, graphische Veranschaulichungen
(Nassi-Shneiderman Diagramme)

e Mitte 70er
— Top-Down-Entwurf fir grolSe Programme nicht ausreichend,
zusatzlich Modularisierung erforderlich
— Entwicklung der Begriffe Abstrakter Datentyp,

Datenkapselung und Information Hiding
Prof. Dr. 31
Stephan Kleuker

OOAD

Historie des SW-Engineering (2/4) i

HHHHHHHHHHHHHHHHHHH

e Ende 70er
— Bedarf fur prazise Definition der Anforderungen an ein
Softwaresystem, Entstehen von Vorgehensmodellen, z. B.
Structured Analysis Design Technique (SADT)
e 80er Jahre
— Vom Compiler zur Entwicklungsumgebung (Editor,
Compiler, Linker, symbolischer Debugger, Source Code
Control Systems)
— Weiterentwicklung der Modularisierung und der
Datenkapselung zur objektorientierten Programmierung
e 9Q0er Jahre
— Obijektorientierte Programmierung nimmt zu (wieder
ausgehend von der Implementierung)
— Neue Programmiersprache Java (ab Mitte 80er C++)
— Anwendungs-Rahmenwerke (Application Frameworks) zur
Vereinfachung von Design und — vor allem —
Programmierung

0O0AD Prof. Dr. 32
Stephan Kleuker

Historie des SW-Engineering (3/4) s

e 9Q0er Jahre
— Geeignete Analyse- und Entwurfsmethoden entstehen
(Coad/Yourdon, Rumbaugh, Booch, Jacobson und andere)
e 1995
— Vereinigung mehrerer Ansatze zunachst als Unified Method
(UM) von Booch und Rumbaugh, dann kommt Jacobson hinzu
(Use Cases).
— 3 Amigos definieren die Unified Modeling Language (UML) als
Quasi-Standard.
e 1997
— UML in der Version 1.1 bei der OMG (Object Management
Group) zur Standardisierung eingereicht und angenommen
— UML ist jedoch keine Entwicklungsmethode (Phasenmodell),
nur eine Beschreibungssprache
e 1999
— Entwicklungsmethode: Unified Process (UP) und Rational
Unified Process (RUP) (erste Version)

0O0AD Prof. Dr. 33
Stephan Kleuker

Historie des SW-Engineering (4/4)

e Heute

OOAD

Vorgehensweisen auf individuelle Projektanforderungen
abgestimmt

CASE-Methoden und —Tools orientieren sich an der UML
Stand 07/2011: UML 2.4.1

Stand 09/2015: UML 2.5

Stand 12/2017: UML 2.5.1 (http://www.uml.org/)

Aufbauend auf Analyse und Design erzeugen
Codegeneratoren Programmgeruste

Haupttatigkeiten bei Softwareentwicklung sind Analyse und
Design, vieles andere versucht man zu automatisieren (!?)

Prof. Dr. 34
Stephan Kleuker

http://www.uml.org/

Warum scheitern SW-Projekte (kleine Auswahl)

e Die Software wurde wesentlich zu spat geliefert
e Die Software erfillt nicht die Wiinsche der nutzenden Personen

e Die Software lauft nicht auf den vereinbarten Rechnersystemen,

sie ist zu langsam oder kommt mit dem Speicher nicht aus

e Die Software kann nicht erweitert werden oder mit anderer

Software zusammenarbeiten

0O0AD Prof. Dr. 35
Stephan Kleuker

Antworten des Software-Engineering

e 1967: Pragung des Begriffs Software-Krise
e |LOsungsansatze:

— Programmiersprachen: kontinuierliche Einfihrung von
Abstraktion (Datentypen, Funktionen, Modulen, Klassen,
Bibliotheken, Frameworks)

— Dokumentation: Einheitliche Notationen fur
Entwicklungsergebnisse (UML)

— Entwicklungsprozesse: Aufgabenbeschreibungen, wann was
wie gemacht wird

— Vorgehensmodelle: Entwicklung passt sich an Bedurfnisse
der nutzenden/bezahlenden Personen an

0O0AD Prof. Dr. 36
Stephan Kleuker

Definitionsversuch Software-Engineering

Zusammenfassend kann man Software-Engineering als die
Wissenschaft der systematischen Entwicklung von Software,
beginnend bei den Anforderungen bis zur Abnahme des fertigen
Produkts und der anschliefSenden Wartungsphase definieren. Es
werden etablierte Losungsansdtze flir Teilaufgaben
vorgeschlagen, die hédufig kombiniert mit neuen Technologien,
vor lhrer Umsetzung auf ihre Anwendbarkeit geprtift werden.
Das zentrale Mittel zur Dokumentation von Software-
Engineering-Ergebnissen sind UML-Diagramme.

OO0AD Prof. Dr. 37
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

3. Vorgehensmodelle

nur kurzer Einblick (Y nur als Vorausschau, nicht Teil der VL)

0O0AD Prof. Dr. 38
Stephan Kleuker

https://youtu.be/N1XIRnDqv2w

Die Phasen der SW- Entwicklung

Erhebung und Festlegung des WAS mit

Anforderungsanal s%)
[® Y Rahmenbedingungen

l

Grobdesign J e Klarung der Funktionalitat und der
Systemarchitektur durch erste Modelle

l e Detaillierte Ausarbeitung der
Komponenten, der Schnittstellen,
Datenstrukturen, des WIE

l e Ausprogrammierung der

Feindesign

—

Programmiervorgaben in der Zielsprache

e Zusammenbau der Komponenten,
Nachweis, dass Anforderungen erfullt
werden, Auslieferung

Implementierung J

Test und IntegratlonJ

0O0AD Prof. Dr. 39
Stephan Kleuker

Wasserfallmodell -

Merkmale:
Phasen werden von oben nach unten
[Anfor‘der‘ungsanalyse] durchlaufen

l Vorteile:
- Plan auch fur IT-unerfahrene verstandlich

[Grobdesign] - einfache Meilensteinplanung
l - lange Zeit haufigste Prozessgrundlage
Feindesign] Nachteile: o
[5 - Anforderungen missen 100%-ig sein
l - spate Entwicklungsrisiken werden spat
} erkannt
[Implementierung] - Qualitat des Design passt sich Zeitplan an
l Optimierung:
[Test und In‘tegr\ation] es ist moglich, in die vorherige Phase zu
springen
0O0AD Prof. Dr. 4@*

Stephan Kleuker

Prototypische Entwicklung ... -

ford N Merkmal_e: -
A[:;ai‘,zzgﬂ -Eanfordepungsanalyse - potenzielle Probleme friihzeitig

identifiziert,

l

[Gr‘obdeﬂgn] [Grobdesign

- Lésungsmaoglichkeiten im Prototypen
J gefunden, daraus Vorgaben abgeleitet
Vorteile:

- frihzeitige Risikominimierung
J - schnelles erstes Projektergebnis

[Felndeﬂgn] [Feindesign Nachteile:
l - Anforderungen miissen fast 100%-tig
Implemen-) Sein _ _ _ _

tler‘ung Implementierung| - Prototyp (illegal) in die Entwicklung

l Ubernommen
- Endergebnis zu schnell erwartet

Test und i . _
[Integratlorj [Test und Integr'atlonJ Optimierung:
es ist moglich, in die vorherige Phase
\PrOtOtyp/ zu springen (auch vorheriges Mode!l'

0O0AD Prof. Dr. 41
Stephan Kleuker

Iterative Entwicklung

—{Anfor‘der‘ungsanalys

Merkmale:
Erweiterung der Prototypidee; SW wird in
J Iterationen entwickelt
- In jeder Iteration wird System weiter verfeinert
Gr‘obde51gn J In ersten Iterationen Schwerpunkt auf Analyse
l und Machbarkeit; spater auf Realisierung

grofSe Vorteile:
- dynamische Reaktion auf Risiken

- Teilergebnisse mit auftraggebenden Personen
diskutierbar

Nachteile im Detail:

l - schwierige Projektplanung

- schwierige Vertragssituation

- zu schnelles Endergebnis erwartet (GUI = fertig)

- Anforderungen als beliebig anderbar angesehen

OO0AD Prof. Dr. 42
Stephan Kleuker

l

Implementierung

[Feindesign

N [Test und Integr'atlonJ

Fertigstellung mit Iterationen

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

lterationen
1. 2. 3. 4.

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

0% Fertigstellungsgrad 100%

00AD Prof. Dr. 43 *
Stephan Kleuker

Iterativ Inkrementelle Entwicklung (State of the Art)...........

Merkmal:

- Projekt in kleine Tellschritte zerlegt

- pro Schritt neue Funktionalitat
(Inkrement) + Uberarbeitung
existierender Ergebnisse (Iteration)

Eii‘obd%signl - n+1-ter Schritt kann Probleme des n-
ten Schritts I6sen

nfo&deru&gsan%lyse

l l Vortelle:

|
J
indbbign] J
|
|

l l l - flexible Reaktion auf neue funktionale

Anforderungen
Im&ﬁeme&iierqng

Nachteile:
- siehe iterativ® (etwas verstarkt)

Optimierung/Anpassung:
Tes.t}und I}rtegr'z}\tlon Anforderungsanalyse am Anfang

Bsp.: vier Inkremente Intensiver durchfiihren
OOAD Prof. Dr. 44

Stephan Kleuker

A
|
[
|
|

Agile Methoden - Beispiel Secrum . o

Product Sprint
backlog backlog
Aufgabe 1 Teilaufgabe 1
Aufgabe 2 Teilaufgabe 2

Planung

far Sprint

OOAD

Sprint Retrospe

Arbeitstag

Scrum-Meet}

Sprint
~21 Arbeitstage

Prof. Dr. 45

Stephan Kleuker

- >

HOCHSCHULE OSNABRUCK

Video

4. Anforderungsanalyse

1 4.1 Stakeholder und Ziele

1 4.2 Klarung der Hauptfunktionalitat (Use Cases)

1 4.3 Beschreibung typischer und alternativer Ablaufe
1 4.4 Ableitung funktionaler Anforderungen

1 4.5 Nicht-funktionale Anforderungen

1 4.6 Lasten- und Pflichtenheft

Literatur:

e [RS] C. Rupp, SOPHIST GROUP, Requirements- Engineering und — Management, Hanser
Fachbuchverlag

e [OW] B. Oestereich, C. Weiss, C. Schroder, T. Weilkiens, A. Lenhard, Objektorientierte
Geschaftsprozessmodellierung mit der UML, dpunkt.Verlag

0O0AD Prof. Dr. 46
Stephan Kleuker

https://youtu.be/VDrwjQXyyjk

so nicht (1/4): Beispiel-Szenario

Zur Stundenerfassung und Abrechnung werden von den in
Projekten mitarbeitenden Personen spezielle Excel-Tabellen
jeden Freitag ausgefillt und am Montag von der Projektleitung
bei der Verwaltung abgegeben.

Die zustandige Sachbearbeitung Ubertragt dann die fir den
Projektuberblick relevanten Daten manuell in ein SAP-System.
Dieses System generiert automatisch eine Ubersicht, aus der
die Geschaftsfihrung ablesen kann, ob die Projekte wie
gewunscht laufen.

Dieser Bericht liegt meist am Freitag der Woche vor. Die
Bearbeitungszeit ist der Geschaftsfihrung zu lang, deshalb soll
der Arbeitsschritt automatisiert werden.

00AD Prof. Dr. 47
Stephan Kleuker

so nicht (2/4): Die Projektplanung

e Projekt ,Projektberichtsautomatisierung” (ProAuto)
beschlossen

e Leiter der hausinternen IT-Abteilung Gber anstehende Aufgabe
informiert, er erhalt Beschreibung der Excel-Daten und
gewunschter SAP-Daten

e Leiter stellt fest, dass seine Abteilung Know-how und die
Kapazitat hat Projekt durchzufiihren, legt Geschaftsfihrung
Projektplan mit Aufwandsschatzung vor

e Geschaftsfuhrung beschliel3t, Projekt intern durchzufihren,
kein externes Angebot einzuholen

0O0AD Prof. Dr. 48
Stephan Kleuker

so nicht (3/4): Die Schritte zum Projektmisserfolg ...

. IT-Abteilung analysiert Excel- [TR Y S

SDEIE?QyLSTedeSItr?gne?&eg’én das Datei EBearbeiten Ansicht Einflge

werden kénnen O E=EH &Gy &
e Kurz nach dem geschatzten
Projektende liegt technisch
saubere Losung vor, Excel A, x E |
wurde um Knopf erweitert; 1
Projektleitung kann per T
Knopfdruck die Daten nach SAP Uberspielen
e Vier Wochen nach Einfuhrung wird die Leitung der IT-
Abteilung entlassen, da Daten zwar jeden Montag vorliegen,
sie aber nicht nutzbar sind; erziirnte Geschaftsleitung hat
deshalb falsche Entscheidungen getroffen
e Projekt wird an Beratungsfirma neu vergeben

ProAutof Arial ~ 10 =

Prof. Dr. 49
Stephan Kleuker

OOAD

so nicht (4/4): so doch, Geschaftsprozessanalyse

< >

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

Produkt
Projektdatenblatt
[initialisiert]

Daten
;icht ok

- / -
verantwortlich oy 3
Projektleitung
!
!
!
/
l’ Produkt
/ Projektdatenblatt
ll [aktualisiert]
!
/
/
!
!
!
"4
Projektdatenblatt Produkt
uberarbeiten Projektdatenblatt
/l'\ [kommentiert]
|
[
Werkzeug

Excel-Erfassungsblatt

OOAD

Sachliche Korrektheit
und Vollstandigkeit

/
Datgn ok /’
L s

Projektdatenblatt
nach SAP ubertragen

Prof. Dr.
Stephan Kleuker

>[/Projektdaten)<_ L

= eintragen
-

Werkzeug
Excel-Erfassungsblatt

_| verantwortlich

Sachbearbeitung

Werkzeug

- SAP-Dateneingabe

Produkt
Projektdaten in SAP
erfasst

%

50

Einschub: Swimlanes (1/2)

e |dee: jede verantwortliche Rolle fiir mindestens eine Aktion
bekommt eine Swimlane

e Aktionen werden jeweils in die Swimlane der verantwortlichen
Rolle eingeordnet

e Swimlanes kdnnen horizontal oder vertikal angeordnet werden

e Vorteil: schnelle Ubersicht liber Verantwortlichkeiten
e Nachteil: recht viel Platz fir wenige Aktionen bendtigt

0O0AD Prof. Dr. 51
Stephan Kleuker

Einschub: Swimlanes (2/2)

- >

HOCHSCHULE OSNABRUCK

Projektleitung

Sachbearbeitung

o > Projektdaten eintragen

sachliche Korrektheit und
Vollstandigkeit der Daten
prufen

[Daten nicht ok

[Projektdatenblatt](
Uberarbeiten

[Daten ok]

[

Projektdatenblatt nach
SAP Ubertragen

o

0O0AD Prof. Dr.
Stephan Kleuker

52

Aufgabe der Anforderungsanalyse

4.1
Bestimmung aller Anforderungen an die zu erstellende Software
bzw. an das zu erstellende DV-System, Anforderungen mussen
—vollstandig,
—notwendig ("WAS statt WIE"),
—eindeutig und
—richtig ("abgestimmt als Teil einer Zielhierarchie") sein.

Bemerkung zur Ablauforganisation: Anforderungen mussen nicht
notwendig in einer Phase vor Beginn des Entwurfs vollstandig
bestimmt werden

00AD Prof. Dr. 53
Stephan Kleuker

Probleme mit Anforderungen an groRe Systeme

OOAD

Auftraggebende, nutzende, betreibende Personen etc. sind haufig
verschiedene Personen, unterschiedliche Personen haben
teilweise widerspriichliche Anforderungen

die Effekte des angestrebten Systems sind schwer vorhersehbar
Anforderungen andern sich im Laufe der Entwicklungszeit
grolser Umfang der Anforderungen

komplexe Interaktion mit anderen Systemen

Erste Aufgabe: Ermittlung der Stakeholder

Definition: Eine Person, die Einfluss auf die Anforderungen hat, da
sie vom System betroffen ist (systembetroffene Person)

Zweite Aufgabe: Ermittlung der Ziele des Systems

Prof. Dr. 54
Stephan Kleuker

Checkliste zum Finden von Stakeholdern (1/3) [RS] ...

Video
e nutzende Personen des Systems
— Die grolste und wichtigste Gruppe, liefert Grolsteil der fachlichen Ziele
— Durchdachtes Auswahlverfahren fur die Nutzungsreprasentanten
notig (Vertrauensbasis der gesamten Nutzungsgruppe
berlicksichtigen!)
e Management des auftragnehmenden Unternehmens (wir)
— Gewahrleisten die Konformitat mit Unternehmenszielen und
Strategien, sowie der Unternehmensphilosophie
— Sind die Sponsoren!
e Personen mit Entscheidungsgewalt des auftraggebenden Unternehmens
— Wer ist fur die Kaufentscheidung verantwortlich?
— Liefer-Vertrags-Zahlungskonditionen?
e prifendende, auditierende Personen
— sind fur Prifung, Freigabe und Abnahme notwendig
e entwickelnde Personen

— nennendie technologiespelgrjgicsclggn Ziele

00AD 55

Stephan Kleuker

https://youtu.be/BiUSOVVLZPI

Checkliste zum Finden von Stakeholdern (2/3)

e Wartungs- und Servicepersonal
— Wartung und Service muss unkompliziert und zugig
durchzufihren sein
— Wichtig bei hohen Stuckzahlen
e Produktbeseitigung
— Wichtig, wenn ausgeliefertes Produkt nicht nur Software
umfasst, Frage der Beseitigung (z.B. Umweltschutz), kann
enormen Einfluss auf die Zielsetzung einer
Produktentwicklung haben
e Schulungs- und Trainingspersonal
— Liefern konkrete Anforderungen zur Bedienbarkeit,
Vermittelbarkeit, Hilfesystem, Dokumentation,
Erlernbarkeit,
e Marketing und Vertriebsabteilung
— Marketing und Vertrieb als interne Reprasentanten der
externen Wiinsche des Auftraggebers und der
Marktentwicklung

OO0AD Prof. Dr. 56
Stephan Kleuker

Checkliste zum Finden von Stakeholdern (3/3)

e Systemschutz
— stellt Anforderungen zum Schutz vor Fehlverhalten von
Stakeholdern
Standards und Gesetze
— vorhandene und zukiinftige Standards/Gesetze
berucksichtigen
e Person die Projekt oder Produkt ablehnen
— Die Klasse der kritisch eingestellten Personen - vor allem zu
Beginn des Projekts wenn moglich mit einbeziehen, sonst
drohen Konflikte
e Kulturkreis
— setzt Rahmenbedingungen, z.B. verwendete Symbolik,
Begriffe, ...
e Meinungsfuhrung und die 6ffentliche Meinung
— beeinflussen oder schreiben Ziele vor, Zielmarkte
berucksichtigen

OO0AD Prof. Dr. 57
Stephan Kleuker

Regeln fiir die Definition von Zielen

Video

Ziele mussen

— vollstandig,

— korrekt,

— konsistent gegentber anderen Zielen und in sich
konsistent,

— testbar,

— verstehbar fur alle Stakeholder,

— umsetzbar — realisierbar,

— notwendig,

— eindeutig und positiv formuliert sein.

Zwei weitere Merkmale:
— Losungsneutralitat
— einschrankende Rahmenbedingungen

Hinweis: Ziele sind abstrakte Top-Level-Anforderungen

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

58

https://youtu.be/ubFSodbp6vo

Schablone zur Zielbeschreibung

Ziel Was soll erreicht werden?

Stakeholder Welche Stakeholder sind in das Ziel involviert?
Ein Ziel ohne Stakeholder macht keinen Sinn.

Auswirkungen Welche Veranderungen werden fur die
auf Stakeholder |Stakeholder erwartet?

Rand- Welche unveranderlichen Randbedingungen
bedingungen mussen bei Zielerreichung beachtet werden?

Abhangigkeiten |Ist dieses Ziel mit anderen Zielen unmittelbar
verknupft? Dies kann einen positiven Effekt
haben, indem die Erfillung von Anforderungen
zur Erreichung mehrerer Ziele beitragt. Es ist
aber auch moglich, dass ein Kompromiss
gefunden werden muss, da Ziele
unterschiedliche Schwerpunkte haben.

Sonstiges Was muss organisatorisch beachtet werden?

00AD Prof. Dr. 59
Stephan Kleuker

Projektbeschreibung s

Zu entwickeln ist ein individuell auf die Unternehmenswiinsche
angepasstes Werkzeug zur Projektverwaltung. Dabei sind die
Arbeitspakete (wer macht wann was) und das Projektcontrolling (wie
steht das Projekt bzgl. seiner Termine und des Budgets) zu
berlcksichtigen. Projekte werden zur Zeit ausgehend von
Projektstrukturplanen geplant und verwaltet.

Projekte kdnnen in Teilprojekte zerlegt werden.

Die eigentlichen Arbeiten finden in Arbeitspaketen, auch Aufgaben
genannt, statt.

Projekte werden von zusammenzustellenden Projektteams bearbeitet,
die zugehorigen Daten der mitarbeitenden Personen sind zu
verwalten. Zur Ermittlung des Projektstands tragen mitarbeitende
Personen ihre Arbeitszeit und den erreichten Fertigstellungsgrad in das
System ein.

00AD Prof. Dr. 60
Stephan Kleuker

Ziele fiir eine Projektmanagementsoftware (1/3) | ... -

Ziel 1. Die Software muss die Planung und Analyse aller laufenden
Projekte ermoglichen

Stakeholder Projektplanung, Projektleitung, mitarbeitende Personen,
Controlling (alle als Nutzende des Systems)

Auswirkungen |Projektplanung: Alle Planungsdaten flieBen in das neue

auf Stakeholder |Werkzeug, es gibt sofort eine Ubersicht, wer an was, von wann
bis wann arbeitet.

Projektleitung: Die Projektleitung ist immer Gber den Stand
informiert, er weil3, wer an was arbeitet.

mitarbeitende Person: Teammitglieder sind verpflichtet, ihre
Arbeitsstunden und erreichten Ergebnisse in das Werkzeug
einzutragen. Sie sehen, fiir welche Folgearbeiten sie wann
verplant sind.

Controlling: Hat Uberblick Gber Projektstand.

Rand- Existierende Datenbestande sollen Ubernommen werden. Die
bedingungen [Randbedingungen zur Verarbeitung personalbezogener Daten
sind zu beachten.

Abhangigkeiten |-
Sonstiges Es liegt eine Studie des auftraggebenden Unternehmens vor,
warum kein Produkt vom Markt zur Realisierung genommen wird.
00AD Prof. Dr. 61

Stephan Kleuker

Ziele fiir eine Projektmanagementsoftware (2/3) | ... -

Ziel 2. Das auftraggebende Unternehmen soll von der fachlichen
Kompetenz unseres Unternehmens liberzeugt werden.

Stakeholder Management, Entwicklung

Auswirkungen |Management: Der Projekterfolg hat grof3e Auswirkungen auf
auf Stakeholder |die nachsten beiden Jahresbilanzen.

Entwicklung: Es werden hohe Anforderungen an die
Software-Qualitat gestellt.

Rand- Es muss noch geprift werden, ob langfristig eine fur beide
bedingungen |Seiten lukrative Zusammenarbeit Gberhaupt moglich ist.

Abhangigkeiten |Uberschneidung mit dem Ziel 3, da eine Konzentration auf
die Wiinsche des auftraggebenden Unternehmens eventuell
einer Verwendbarkeit fur den allgemeinen Markt
widersprechen kann.

Sonstiges Das Verhalten des neuen auftraggebenden Unternehmens
bei Anderungswiinschen ist unbekannt.
OO0AD Prof. Dr. 62

Stephan Kleuker

Ziele fiir eine Projektmanagementsoftware (3/3) | ... -

Ziel 3. Das neue Produkt soll fiir einen groReren Markt einsetzbar
sein.
Stakeholder Management, Vertrieb, Entwicklung, Rechtsabteilung

Auswirkungen |Management: Es soll eine Marktposition auf dem

auf Stakeholder |Marktsegment Projektmanagement-Software aufgebaut
werden.

Vertrieb: In Gesprachen mit potenziell auftraggebenden
Unternehmen wird das neue Produkt und seine
Integrationsmoglichkeit mit anderen Produkten ab Projektstart
beworben.

Entwicklung: Die Software muss modular aufgebaut aus
Software-Komponenten mit klaren Schnittstellen bestehen.
Rechtsabteilung: Klarung der Lizensierung

Randbedingungen |-

Abhangigkeiten |zu Ziel 2 (Beschreibung dort)

Sonstiges Eine Analyse der Konkurrenz auf dem Markt liegt vor. Es sind
Moglichkeiten flir neue, den Markt interessierende
Funktionalitaten aufgezeigt worden.

00AD Prof. Dr. 63
Stephan Kleuker

Rahmenbedingungen und weiteres Vorgehen

Traceability:

e alle Anforderungen mussen sich auf ein Ziel zurtckfuhren
lassen

e alle Ziele benétigen einen Stakeholder (Okonomie-Check)
Kommunikation:

e die ausgewahlten Stakeholder mussen nun detaillierter befragt
und dauerhaft in das Projekt integriert werden

Warum der ganze Aufwand:

e Vergessene Ziele und Stakeholder fihren zu massiven Change
Requests

Das eigentliche SW-Projekt kann beginnen.

0O0AD Prof. Dr. 64
Stephan Kleuker

Uberblick Giber den Analyseprozess @~ | .
Video

4.2

1. Erfassung der Systemaufgaben mit ,,Use Cases”

2. Beschreibung der Aufgaben mit
Aktivitatsdiagrammen

(optional 3. Formalisierung der Beschreibungen in
Anforderungen)

4. Aufbau eines tieferen Verstandnisses durch
Klassenmodellierung und Sequenzdiagramme
(Grobdesign)

iterativer Prozess

00AD Prof. Dr. 65
Stephan Kleuker

https://youtu.be/O3RuNZN6Kyo

Erfragung des WAS?

e Zentrale Frage:
Was sind die Hauptaufgaben des Systems?

e Wer ist an den Aufgaben beteiligt?
e Welche Schritte gehoren zur Aufgabenerfullung?

=> Aufgaben werden als Use Cases (Anwendungsfalle)
beschrieben

=> Beteiligte werden als Aktoren festgehalten
(konnen meist aus der Menge der Stakeholder bzw.
deren Rollen entnommen werden)

00AD Prof. Dr. 66
Stephan Kleuker

Use Case (Anwendungsfall) s

e Use Case beschreibt in der Sprache der Stakeholder, d.h. in
naturlicher Sprache, eine konsistente und zielgerichtete
Interaktion der nutzenden Person mit einem System, an deren
Anfang ein fachlicher Ausloser steht und an deren Ende ein
definiertes Ergebnis von fachlichem Wert entstanden ist

e Ein Use Case beschreibt das gewlinschte externe
Systemverhalten aus Sicht einer nutzenden Person und somit
Anforderungen, die das System erfllen soll

e eine Beschreibung was es leisten muss, aber nicht wie es dies
leisten soll

e Unterscheidung in Geschaftsanwendungsfall (business use
case) formuliert aus Geschaftssicht (z. B. Vertriebsprozess vom
Anfang) und Systemanwendungsfall (system use case)
formuliert aus Sicht der durch die neue SW zu l6senden
Aufgabe

OO0AD Prof. Dr. 67
Stephan Kleuker

Business Use Case [OW] B

2.1.8 Geschaftsanwendungsfall

e Verwandte Begriffe: engl. business use Case, Geschdftsfall.

Definition

e Ein Geschaftsanwendungsfall beschreibt einen geschaftlichen
Ablauf, wird von einem geschaftlichen Ereignis ausgelost und
endet mit einem Ergebnis, das flir den Unternehmenszweck
und die Gewinnerzielungsabsicht direkt oder indirekt einen
geschaftlichen Wert darstellt.

Beschreibung

e Bei einem Geschaftsanwendungsfall wird die Frage nach der
moglichen systemtechnischen Umsetzung noch nicht gestellt,
sondern vollig unabhangig davon ganz allgemein aus
geschaftlicher Sicht beschrieben.

e Beispiel: Business Use Case ,Angebotserstellung”

0O0AD Prof. Dr. 68
Stephan Kleuker

System Use Case [OW] s

2.1.9 Systemanwendungsfall

e Verwandte Begriffe: engl. System use case

Definition

e Ein Systemanwendungsfall ist ein Anwendungsfall, der speziell
das fiir aulRen stehende Akteure (nutzende Person oder

Nachbarsysteme) wahrnehmbare Verhalten eines (Hard-
/Software-) Systems beschreibt.

Beschreibung

e Aus UML- und Softwareentwicklungssicht ist der
Systemanwendungsfall die normale Form eines
Anwendungsfalles. In Abgrenzung zu den verschiedenen Arten
von Geschaftsanwendungsfallen beschreibt ein
Systemanwendungsfall konkret das Verhalten bzw. den
Arbeitsablauf, wie er durch ein System (z. B. Software)
unterstitzt wird. Dabei wird das aullerlich wahrnehmbare
Verhalten beschrieben, also was das System macht, aber nicht

wie es dies tut. Prof. Dr. 69
Stephan Kleuker

O0A

Zusammenhang der Use Case Arten s

e Fur ein neu geplantes SW-System wird zunachst analysiert,
welche Prozesse mit der SW unterstitzt werden sollen
(Geschaftsprozessmodellierung)

e Oft geht mit Modellierung auch eine Optimierung einher

e Man erhalt zentrale Aufgaben, die das SW-System Ubernehmen
soll (Business Use Case)

e Ausgehend davon werden die Aufgaben geplant, die das SW-
System unterstiitzen/ausfihren soll, dies sind die System Use
Cases

e Haufig gehort zu einem Business Use Case ein System Use Case,
d. h. es gibt die gleiche Uberschrift, aber eine unterschiedliche
Beschreibung (im System Use Case steht die Nutzung des neues
SW-Systems im Mittelpunkt)

e Es kann weitere System Use Cases geben, die z. B. die
Systemwartung oder neue Analysemoglichkeiten betreffen

0O0AD Prof. Dr. 70
Stephan Kleuker

Wege zur Use Case-Ermittlung

e moderierter Workshop zentraler Stakeholder

e Beobachtung der Personen, die das bisherige oder ein
vergleichbares System nutzen

e Fragebodgen
e |nterviews
e auftraggebende Person vor Ort im Projekt

e Analyse von Altsystemen und Dokumenten der
auftraggebenden Personen

e Simulationsmodelle

00AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

71

Darstellungsbeispiel: Business-Netzwerk

< »

HOCHSCHULE OSNABRUCK

Person
registrieren
interessiert

Kontakte
\e\ ntzen Admin
Person
Kontakte
suchen

_— Kontakte
vorschlagen
externe

Stellenvorschlag
berechnen

Timer

Prof. Dr.
Stephan Kleuker

OOAD

Stellenborse

externe Sicht der
nutzenden Person auf die
Aufgaben des Systems

Aktoren konnen Personen
oder andere Systeme oder
interne Ausloser sein

Use Cases konnen in
Teilpaketen strukturiert
werden

das zu entwickelnde
System tritt nie Aktor auf,
kann als Kasten um UC
stehen 72

Systematische Use-Case Ermittlung (1/4) ... -

1. Welche Basisinformationen / Objekte sind zu bearbeiten (keine
Detailmodellierung, keine Informationen, die aus anderen
berechenbar sind)?

Beispiel (Projektmanagementsystem): Projekte, mitarbeitende

Personen

Prife ob neues System Basisinformationen verwaltet oder Sie
aus existierenden Systemen stammen

neues System: Use Case ,Basisinformation XY verwalten”
gefunden (evtl. in ,,anlegen”, , bearbeiten”, , |6schen
trennen)

existierendes System: tritt als Aktor auf, wenn Daten benotigt

i Projektstruktur
T Daten mitarbeitender @
Personen pflegen

Projektbiro

Personalabteilung

0O0AD Prof. Dr. 73
Stephan Kleuker

Systematische Use-Case Ermittlung (2/4) -

HHHHHHHHHHHHHHHHHHH

2. Welche Prozessinformationen sind zu verwalten, also dynamisch
entstehende Daten, Daten zur Verknupfung von
Basisinformationen

Beispiel: Projektteams, Arbeitsstunden der mitarbeitenden
Personen

Erganze Use Cases, die die Verknupfung der Daten herstellen

Arbeitsstand
aktualisieren

Projektblro _ _
mitarbeitende
Person

Projektteam
usammenstelle

0O0AD Prof. Dr. 74
Stephan Kleuker

Systematische Use-Case Ermittlung (3/4) ... -

3. Ermittle Funktionalitat, die auf Basis der Verarbeitung von Basis-
und Prozessinformationen benotigt wird

abstrakte Beispiele: Entscheidungsprozesse/ Analyseprozesse
zur Auswertung (Statistiken, Ubersichten)

Erganze Use Case fir jede der Prozessarten (Art bedeutet,
Zusammenfassung eng verwandter Funktionalitat)

Projektleitung

Projektstand
analysieren

Controlling

Prof. Dr. 75

OOAD
Stephan Kleuker

Systematische Use-Case Ermittlung (4/4)

4. Ermittle Use Cases zur reinen Systempflege insofern es
besondere Herausforderungen gibt

abstrakte Beispiele: langfristige Datenhaltung, Systemstart,
Systemterminierung

Zeichne Use Case-Diagramm und erganze Aktoren (z. B.
Stakeholder, genutzte Systeme, Timer) und Dokumentation

Prof. Dr. 76

OOAD
Stephan Kleuker

< »

Abgeleitetes Use Case-Diagramm o o
Projektstruktur
bearbeiten

Projektburo
Projektteam

f 3 usammenstelle

Projektleitung

Daten mitarbeitender
Personen pflegen

Personalabteilung

Arbeitsstand
aktualisieren

Projektstand
analysieren
mitarbeitende
i ; Person
ontrolling =
Ubung
00AD Prof. Dr. 77

Stephan Kleuker

https://youtu.be/hqc5aA3UFEI

Use Case-Erstellung genauer

e Beschreibung eines Use Cases
—zunachst verbal

—relativ abstrakt, wird spater verfeinert
e |eitfragen fur die Ermittlung von Aktoren und Prozessen

—Welcher Aktor l6st Use Case aus?
—Welche Aktoren sind am Use Case beteiligt?
—Welche Aufgaben sind im Use Case zu erfillen?

—Wer ist verantwortlich fir Planung, Durchfiihrung, Kontrolle der
Aufgaben?

—Welche Ereignisse starten Use Case, treten im Use Case auf?
—Welche Bedingungen sind zu beachten?
—Was sind die Ergebnisse des Use Cases?
—Welche Beziehungen gibt es zu welchen anderen Use Cases?

0O0AD Prof. Dr. 78
Stephan Kleuker

Verfeinerung der Use Case-Dokumentation

13 Video

e |m ersten Schritt werden in Use Cases nur Hauptaufgaben des
Systems beschrieben

e Zur Dokumentation der Use Cases gehort zunachst nur eine
grobe kurze Beschreibung (maximal 5 Satze) des Inhalts

e |m nachsten Schritt wird dieser Inhalt konkretisiert. Dabei ist es
sinnvoll, auf eine Dokumentationsschablone zurtick zu greifen
(oder eine flr das Projekt zu entwickeln)

e |m ersten Schritt der Beschreibungsentwicklung wird nur der
typische Ablauf des Use Cases ohne Alternativen, dann mit
Alternativen beschrieben

0O0AD Prof. Dr. 79
Stephan Kleuker

https://youtu.be/wqYxTyKDWnM

Dokumentationsschablone fiir Use Cases (1/3) | ... -

Name des Use |1 |[kurze pragnante Beschreibung, meist aus Verb und
Case Nomen

Nummer 1 | eindeutige Nummer zur Verwaltung, sollte von der
eingesetzten Entwicklungsumgebung vergeben
werden

Paket 2 | bei sehr komplexen Systemen kdnnen Use Cases in

Teilaufgabenbereiche zusammengefasst werden,
diese Bereiche kdnnen in der UML als Pakete
dargestellt werden

Erstellung 1 | wer hat den Use Case erstellt und wer mitgearbeitet
Version 1 |aktuelle Versionsnummer, moglichst mit
Anderungshistorie, wer hat wann was geandert
Kurzbeschrei- 1 | kurze Beschreibung, was mit dem Use Case auf
bung welchem Weg erreicht werden soll,
beteiligte 1 | welche Aktoren sind beteiligt, wer stolst den Use
Aktoren Case an
(Stakeholder)
0O0AD Prof. Dr. 80

Stephan Kleuker

Dokumentationsschablone fiir Use Cases (2/3) | ... -

Fachverant- 1 | wer steht auf fachlicher Seite flir Fragen zum Use Case zur
wortlich Verfligung und entscheidet auf Auftraggebenderseite fir
die Software Uber den Inhalt

Referenzen 2 | Nennung aller Informationen, die bei der spateren
Ausimplementierung zu beachten beziehungsweise
hilfreich sind, konnen Verweise auf Gesetze, Normen oder
Dokumentationen existierender Systeme sein

Vorbedingungen | 2 | was muss erfullt sein, damit der Use Case starten kann

Nachbedin- 2 | wie sieht das mogliche Ergebnis aus, im nachsten Schritt
gungen sind auch die Ergebnisse alternativer Ablaufe zu
bericksichtigen

typischer Ablauf | 2 | welche einzelnen Schritte werden im Use Case
durchlaufen, dabei wird nur der gewlinschte typische
Ablauf dokumentiert

alternative 3 | welche Alternativen existieren zum typischen Ablauf
Ablaufe
0O0AD Prof. Dr. 81

Stephan Kleuker

Dokumentationsschablone fiir Use Cases (3/3) | -

Kritikalitat wie wichtig ist diese Funktionalitat fir das
Gesamtsystem

Verknupfungen welche Zusammenhange bestehen zu anderen Use
Cases

funktionale welche konkreten funktionalen Anforderungen

Anforderungen werden aus diesem Use Case abgeleitet

nicht- welche konkreten nicht-funktionalen Anforderungen

funktionale werden aus diesem Use Case abgeleitet

Anforderungen

e Nummer gibt Iteration an, in der das Feld gefillt wird
e typischer und alternative Ablaufe werden jetzt genauer

betrachtet

e funktionale und nicht-funktionale Anforderungen weiter
hinten in diesem Abschnitt

OOAD

Prof. Dr. 82
Stephan Kleuker

Beispielbeschreibung (1/2) | -

Name des Use Case

Projektstruktur bearbeiten

Nummer Ul

Paket -

Erstellung Achmed Analytiker
Version 1.0, 30.01.2019, Erstellung

Kurzbeschrei-bung

Im Projektbiiro tatige Personen haben die Moglichkeit,
Projekte mit Teilprojekten anzulegen und zu
bearbeiten.

beteiligte Aktoren
(Stakeholder)

Projektburo (startet Use Case durch Auswahl der
Funktionalitat im zu erstellenden System)

Fachverantwortlich

Lisa Leitung (zentrale Ansprechpartnerin des
auftraggebenden Unternehmens)

Referenzen Handbuch zur Fihrung von Projekten des
auftraggebenden Unternehmens
0O0AD Prof. Dr. 83

Stephan Kleuker

- >

Beispielbeschreibung (2/2)

Vorbedingungen | Die Software ist vollstandig installiert und wurde gestartet.

Nachbedingun- Neue Projekte und Teilprojekte sowie Anderungen von
gen Projekten und Teilprojekten wurden vom System
ubernommen.

typischer Ablauf | 1. Nutzende Person wahlt Funktionalitat zur Bearbeitung
von Projektstrukturen

2. Nutzende Person legt Projekt mit Projektstandarddaten an
3. Nutzende Person erganzt neue Teilprojekte

4. Nutzende Person verlasst Funktionalitat

alternative Die nutzenden Person kann existierendes Projekt auswahlen,

Ablaufe Die nutzenden Person kann Daten eines Teilprojekts andern
Kritikalitat sehr hoch, System macht ohne Funktionalitat keinen Sinn
0O0AD Prof. Dr. 84

Stephan Kleuker

Hinweise zu Use Cases (1/2)

e Verwende fir den Use Case eine sinnvolle Bezeichnung, die
mindestens aus einem echten Substantiv und einem aktiven
Verb ("Antrag erfassen") oder dem zugehorigen Gerundium
("Antragserfassung") besteht!

e Definiere zuerst den fachlichen Ausloser und das fachliche
Ergebnis, um Anfang und Ende des Use Cases festzulegen!

e Formuliere den Use Case so abstrakt wie moglich und so konkret
wie notig!

e Betreibe zundchst keine Zerlegung in abgeleitete, sekundare Use
Cases!

e Standardisiere die Sprache in den Use Cases!

0O0AD Prof. Dr. 85
Stephan Kleuker

Hinweise zu Use Cases (2/2)

e Use Cases eignen sich nicht zur funktionalen Zerlegung, d.h. ein
Use Case beschreibt keine einzelnen Schritte, Operationen
oder Transaktionen (bspw. "Vertrag drucken", , Auftrags-Nr.
erzeugen" etc.), sondern relativ grol3e Ablaufe (bspw. "Neuen
Auftrag aufnehmen")

e Es wird keine Ablaufreihenfolge definiert, hierzu gibt es andere
Ausdrucksmittel, z.B. Aktivitatsdiagramme

e Use Cases belassen das Sprachmonopol beim Stakeholder,
wodurch die Use Cases angreifbarer und besser kritisierbar
werden

e Bereits hier sinnvoll: Glossar anlegen (Begriffe und Prozesses
definieren)

0O0AD Prof. Dr. 86
Stephan Kleuker

Analyse von Use-Case-Dokumentationen

e es kann passieren, dass identische Ablaufe mehrfach
beschrieben werden

e diese (nicht trivialen) Ablaufe konnen als eigene Use Cases
ausgegliedert werden; man sagt dann ,,ein Use Case nutzt
einen anderen Use Case”

e UML-Darstellung:

e |n spitzen <<Klammern>> stehen sogenannte Stereotypen, mit
denen man UML-Elementen zusatzliche Eigenschaften
zuordnen kann

00AD Prof. Dr. 87
Stephan Kleuker

< >

Beispiel zu <<include>> o i

Daten mitarbeitender\~
Personen pflegen

Personalabteilung

in Rolle
anmelden
«include»->
Arbeitsstand -

aktualisieren

mitarbeitende
Person

00AD Prof. Dr. 88
Stephan Kleuker

< »

<<extend>> o o

e Seltene Variation des erweiterten Use Cases

e Wird nur unter bestimmter Bedingung ausgefihrt, z. B.
Sonderfall oder Fehlerbehandlung

e eigentlicher Use Case nicht durch Spezialfalle Gberfrachtet

: . Projektstand “\<=<extends>>
Projektleitung arn zJaIeysinen e “? =R Projektwarnung
\ ausgeben
\

\

Condition:
{Stand des Projekts
stark verschlechtert}

Controlling

0O0AD Prof. Dr. 89
Stephan Kleuker

Hinweis zu <<include>>, <<extend>> (personlich)

e <<include>> ist ein sehr nutzlicher Stereotyp, der die
Dokumentation verkulrzen kann

e Gerade bei in der Modellierung unerfahrenen auftraggebenden
Unternehmen sollte <<include>> zunachst verheimlicht
werden, da sonst funktionale Zerlegungen in Baumen das
Ergebnis sind

e <<include>> wird dann bei der Dokumentation und spateren
Verfeinerung bei der Umstrukturierung der Use Cases als
Optimierung eingesetzt

e Hinweis: <<extend>> und weitere nicht erwahnte
Moglichkeiten werden hier ignoriert, da es auftraggebende

Unternehmen, genauer Personen ohne IT-Background, eher
verwirrt

00AD Prof. Dr. 90
Stephan Kleuker

< >

weiteres Use Case — Diagramm: Online-Autobodrse ...

Auto eingeben

.

i
e Datenimport aus
anderen Autoportalen
<<includes>>>—_generieren
registrierter ol

Autohandel Print-Anzeige schalten

Auto suchen :
@«mL s>>

\\\ .
\ -0 f‘.

int ot Kontakt mit Handel
interessierte Stahan
Person

/ Accounts verwalten

Druckvorlagen verwalten

Statistiken erstellen

i

00AD Prof. Dr. 91
Stephan Kleuker

Beschreibung verschiedener Ablaufe o e

Video

e Bei Projekten mit enger Bindung (z.B. bei engen Beziehungen
zwischen AG und IT-Abteilung bei Inhouse-Projekten) kénnen
Use Cases (oder User Stories) als Anforderungsdokumentation
ausreichen, wenn das Projekt in kleinen Iterationen und der
Moglichkeit eines groRen Einflusses der auftraggebenden
Partei entwickelt wird

e Oftmals ist die Beschreibung der Use Cases aber zu ungenau,
gerade bei der Darstellung typischer und Alternativer Ablaufe
stellt sich die rein sprachliche Beschreibung als recht aufwandig
heraus

e Da die UML eine graphische Sprache ist, stellt sie auch fur

Ablaufbeschreibungen eine grafische Darstellungsmaoglichkeit,
namlich Aktivitdtsdiagramme, zur Verfigung

0O0AD Prof. Dr. 92
Stephan Kleuker

https://youtu.be/86aZX8jfylY

Modellierungsrichtlinie fur Aktivitatsdiagramme e i

Modelliere zu jedem Use Case genau ein Aktivitatsdiagramm
e Mache aus den Use Case-Schritten Aktionen

o Zerlege die Aktionen ggfls. mit einem Aktivitatsdiagramm, so
dass sie stets genau einen fachlichen Arbeitsschritt
reprasentieren

e Erganze den Ablauf um alle bekannten fachlichen Ausnahmen,
fachlichen Fehler und fachlichen Ablaufvarianten, so dass das
Diagramm eine vollstandige Beschreibung aller zuldssigen
Ablaufmoglichkeiten darstellt

(sinnvoll jetzt oder spater) Modelliere den Objektfluss:

e Beschreibe zu jeder Aktion die vorausgesetzten (zu
verarbeitenden) und resultierenden (erzeugten oder
veranderten) Geschaftsobjekte (Produkte).

e Unterscheide, bei welchen ausgehenden Transitionen bzw.
Bedingungen welche Objekte bzw. Objektzustande resultieren

00AD Prof. Dr. 93
Stephan Kleuker

Aktivitatsdiagramm mit typischen Ablauf ... -

Use Case: Projektstruktur bearbeiten

!

projekiidentifizierende
Daten eingeben

[Bearbeilung beenden]
[weiteres ([T eil}Projeki]

neues Tellprojekt
erganzen C\é

Anmerkung: typischer Ablauf ist immer einfache Sequenz von
Aktionen, Ausnahme wie hier: einfache Schleifen

0O0AD Prof. Dr. 94
Stephan Kleuker

Aktivitatsdiagramm um Alternativen erganzt

[kein neues
Projekt]

[neues [Projekt]

prujektldentlf'zlere nde Pr{}JEkl
Daten eingeben auswahlen

[Bearbeitung beenden]

[(Teil)-Projekt bearbeiten]

[neues Teilprojekt] [Teilprojekt verfeinern]
(Teil)-Projekt
v auswahlen
neues Teilprojekt
(erganzen) 7
Teilprojektdaten
aktualisieren
S N\
NS 4
@
0O0AD Prof. Dr.

Stephan Kleuker

- >

HOCHSCHULE OSNABRUCK

95

L] [° ° < »
Erinnerung: Modellierung aus Business-Sicht
Untemehmens) ~.| Produkt
gesprach J “| Individualwiinsche
7 B, 73 [initial]
7 N\
s ~
»7 P \/
verantwortlich [| mitwirkend Kosten I—'_I _ _ _| verantwortlich
Vertrieb Untemehmen kalkulieren Fachabteilung
W
Produkt
Kostenvoranschlag
verantwortlich [initial]
Vertrieb
¥ Produkt
mitwirkend N < Kostenvoranschlag
Untemehmen [aktualisiert]
/
@< Produkt |_ [Vorschlag Vertrags-
S Vertrag |~ akzeptiert] verhandlung Kosten
2 : rekalkulieren
[Vorschlag night akzeptiert]
Produkt !
Individualwinsche verantwortlich
[aktualisiert] Fachabteilung
00AD Prof. Dr. 96

Stephan Kleuker

Modellierung aus System-Sicht

Kontakt
auswahlen d

Individualwinsche
es Kontaktes eintrage

Nutzung
Vertriebsmitarbeit

ertrag | _-[Kalkulation /\/

Produkt
Individualwinsche
[initial]

/

kalkulierte Kosten| -
eintragen

/

Produkt
Kostenvoranschlag
[initial]

Nutzung
Fachabteilung

nicht

V
archiviere

OOAD

bearbeiten]

[Kalkulatior] bearbeiten]

Nutzung
Vertriebsmitarbeit

Produkt

_~[Individualwinsch
aktualisieren

e)% Individualwiinsche
[aktualisiert]

Produkt
Kostenvoranschlag
[aktualisiert]

/N

kalkulierte Kosten
aktualisieren

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

Nutzung
Fachabteilung

Prof. Dr.
Stephan Kleuker

97

n+1 Aktivititsdiagramme (1/2) i

HHHHHHHHHHHHHHHHHHH

e typisch: zu jedem Use Case ein Aktivitatsdiagramm (ggfls. mit
Verfeinerung)

e Ansatz ausreichend, wenn keine zentrale Steuerung (z. B.
WebServices)

e Flr zentrale Steuerung wird ein zusatzliches

Aktivitatsdiagramm benotigt, dass diesen Ablauf zeigt (z. B. GUI
mit Nutzungsauswahl)

0O0AD Prof. Dr. 98
Stephan Kleuker

< »

n+1 Aktivitatsdiagramme (2/2)

@ - inRolle) ol N

2\ anmelden /Y

MenUpunkt
auswahlen

[Projektstruktur [Arbeitsstand
ewghlt] [Projek1team gewahilt] [mitarbeitende Person gewghlt]
[Projektst gewahlt] gewkhlt]
Pro;ektstruktur Pro;ektteam Projektstand g Daten mitarbeitender Arbeltsstand
bearbeiten ™ zusammenstellen analysieren Personenpflegen aktuallsneren
[Ende ~
gewahlt]
Programm N \©
beenden / =
00AD Prof. Dr. 99

Stephan Kleuker

Formulierung von Anforderungen

14 Video

e Analog zu Use Cases sind Aktivitatsdiagramme zu
dokumentieren: was unter Nutzung welcher Hilfsmittel unter
Berlicksichtigung welcher Nebenbedingungen gilt

e Beschreibungen kdonnen oft unvollstandig oder unklar
formuliert sein, sind zu prifen

e Statt FlieBtextdokumentation von Aktivitatsdiagrammen, kann
eine Darstellung von systematisch abgeleiteten textuellen
Anforderungen sinnvoll sein

e Man bendtigt Ansatz, Texte moglichst prazise zu formulieren

0O0AD Prof. Dr. 100
Stephan Kleuker

https://youtu.be/T1ONvFYVKn0

Sprache als Darstellungsmittel . -

Formulierte Anforderungen

e sind in naturlicher Sprache verfasst

e gewissen Prozessen bei der Entstehung unterworfen

Entstehungsprozesse

e verandern/verfalschen die beabsichtigte Bedeutung einer
Anforderung

e hat jeder Mensch, Wenr - \Jissens -~ sind
. nRAMmu
regelgeleitet > Q

R
KN
0 ekenk 1: QQ&“Q vk L
e persanlichey
Reolitek o Coroch.
SSen Lol
Pet DA LIWe AR |
OOAD Watvhvaane |k Auschracln

Stephan Kleuker

»-
Glossar e

e Zentrales Hilfsmittel der Anforderungsanalyse

e Aufbau: Fachbegriff — Erklarung

e Wichtig: Fachbegriff kann auch Halbsatz sein

e Kann detaillierte Erklarungen oder Referenzen auf Fachliteratur
enthalten

e muss von auftraggebenden und entwickelnden Personen
verstanden werden

Arbeitspaket Synonym fur Projektaufgabe

Projektaufgabe | Nicht weiter zerlegte Aufgabe mit
zugewiesenen Rollen zur Bearbeitung;
gleiche Ausgangsdaten wie Projekt

Projektausgangs- | automatisch vergebene eindeutige

daten Projekthummer, Projektname, geplanter
Start- und Endtermin, geplanter Aufwand
00AD Prof. Dr. 102

Stephan Kleuker

Probleme mit natiirlich-sprachlichen Formulierungen..........

e Hauptprozesse der menschlichen Modellbildung
— Tilgung
— Generalisierung
— Verzerrung (z. B. durch Nominalisierung)

e Problem: Anforderungen werden fiir Menschen mit anderer
Modellbildung (da andere Erfahrungen) unsauber formuliert

e |n Prosatexten sind Wiederholungen unerwtinscht; bei
Anforderungen mussen immer die gleichen Worte flr den
gleichen Sachverhalt genutzt werden

Prof. Dr. 103

OOAD
Stephan Kleuker

Definition: Tilgung

e Tilgung ist ein Prozess, durch den wir unsere Aufmerksamkeit
selektiv bestimmten Dimensionen unserer Erfahrungen
zuwenden und andere ausschlieBen. (Bandler/Grinder)

e Beispiel: Die Fahigkeit des Menschen, In einem Raum voller
sprechender Menschen alle anderen Gerausche auszuschlielRen
oder auszufiltern, um der Stimme einer bestimmten Person
zuzuhoren.

e problematisch fir Anforderungen: implizite Annahmen,
unvollstandige Vergleiche

00AD Prof. Dr. 104
Stephan Kleuker

Beispiele fiir Tilgungen (1/2)

e Grundstruktur: Manche Prozessworte (Verben und Pradikate)
implizieren zwei oder mehr Substantivargumente

e Sprachliche Vertreter
— Eingeben: Wer? Was? Wie? Wo? Wann?
— Anzeigen: Was? Wo? In welcher Weise? Wann?
— Ubertragen: Wer? Was? Von wo? Wohin? Wann?

— ,Die Auszahlungsmoéglichkeit soll Gberprift und die
Auszahlung verbucht werden”

— Uberpriifen: Wer Uberprift? Was wird Giberpriift? Nach
welchen Regeln wird tUberprift? Wann wird tUberpruft?
Wie?

— Verbuchen: Wer verbucht? Was wird verbucht? Wann wird
es verbucht? Wie?

0O0AD Prof. Dr. 105
Stephan Kleuker

Beispiele fiir Tilgungen (2/2)

e Grundstruktur: Der Bezugspunkt. die Messbarkeit und die
Messgenauigkeit fur einen Komparativ oder Superlativ fehlt.

e Sprachliche Vertreter: Adjektiv + Endung "-er/en", "-ste" oder

"more", "less", "least", oder "weniger", "mehr"

e |n beiden Sprachen: Adjektive wie leicht, easy, schwer,
complicated, ...

e Fur durchschnittlich grolse Menschen soll das Display im
normalen Bedienabstand gut lesbar sein.

* Die Eingabe des angeforderten Geldbetrages soll vom System
durch eine intuitive Nutzungsfiihrung so unterstutzt werden,
dass Fehleingaben minimiert werden.

— Kann man den Sachverhalt Gberhaupt messen?
— |Ist der Bezugspunkt des Vergleiches angegeben?

— Mit welcher Messgenauigkeit wird gemessen?

0O0AD Prof. Dr. 106
Stephan Kleuker

Definition: Generalisierung

e Generalisierung ist der Prozess, durch den Elemente oder Teile
eines personlichen Modells von der urspriinglichen Erfahrung
abgeldst werden, um dann die gesamte Kategorie, von der
diese Erfahrung ein Beispiel darstellt, zu verkorpern.
(Bendler/Grindler)

e Beispiel: Ein Kind verbrennt sich an einer heillen Herdplatte die
Hand. Es sollte fir sich die richtige Generalisierung aufstellen,
dass es schmerzhaft ist auf heile Herdplatten zu fassen.

e problematisch fir Anforderungen: Universalquantoren,
unvollstandige Bedingungen

OO0AD Prof. Dr. 107
Stephan Kleuker

Generalisierung durch Universalquantoren

Universalquantoren
e Grundstruktur: Menge an Objekten wird zusammengefasst
e Sprachliche Vertreter:
— Im Deutschen: nie, immer, kein, jeder, alle, ...
— Im Englischen: never, ever, not, each, always, ...
e Frage:
— Wirklich alle/jede, immer/nie? Gibt es keine Ausnahme?

— Achtung! Auch Satze ohne Universalqguantoren Gberprifen,
die keine Angaben Uber die Haufigkeit enthalten!

00AD Prof. Dr. 108
Stephan Kleuker

Beispiele fur Generalisierungen

e Jede Auszahlung soll fur die Rickverfolgbarkeit zusatzlich mit
einem Zeitstempel etikettiert werden.

— Wirklich jede Auszahlung?

e Das System soll eine Sicherung von aufgezeichneten
Auszahlungsdaten auf ein externes Speichermedium
ermoglichen.

— Durch jede Person? Immer? Aller Auszahlungsdaten?

00AD Prof. Dr. 109
Stephan Kleuker

Definition: Verzerrung -

HHHHHHHHHHHHHHHHHHH

e Verzerrung ist der Prozess, etwas mittels Uberlegungen,
Fantasie oder Wiinschen, so umzugestalten, dass ein neuer
Inhalt oder eine neue Bedeutung entsteht. (Dorrenbacher)

e Beispiel: Behauptung, dass auf A dann B folgt oder
Gedankenlesen

— Da jemand zu spat ist, ist das Projekt gefahrdet
— Ich denke, der mag mich nicht

— Er sollte wissen, wie ich mich jetzt fiihle

0O0AD Prof. Dr. 110
Stephan Kleuker

Verzerrung: Beispiele und Analyse

e Die nutzende Person muss zunachst sein Login und dann sein
Passwort eingeben.

e Der nutzenden Person muss am Anfang immer die
Ubersichtsseite gezeigt werden.

e Die nutzende Person muss eingeloggt sein, um die Ubersicht zu
sehen.

e ,Das muss genau wie Word aufgebaut sein”

e Was fuhrt zur Annahme, dass diese Reihenfolgen notwendig
sind?

e Was wirde sich bei einer anderen Reihenfolge oder Verlassen
einer Einschrankung andern?

e Welche Eigenschaften von Word sind wichtig; warum muss es so
sein

00AD Prof. Dr. 111
Stephan Kleuker

Verzerrung durch Nominalisierung

e Grundstruktur: Ein Prozesswort (Verb oder Pradikat) wird zu einem
Ereigniswort (Substantiv oder Argument) umgeformt.

e Dadurch wird ein Vorgang zu einem Ereignis und viele
vorgangsrelevante Informationen gehen verloren.

e Esist moglich, dass sich die Bedeutung der Aussage dadurch andert
— Die Berechtigung fur die Administration des Geldautomaten
— Die Auszahlung wird nach der Buchung durchgefiihrt

— Wer? zahlt wann? Wem? Was? Unter Einhaltung welcher
Regeln? Mit welcher Zuverlassigkeit? Mit welcher
Verfugbarkeit?

— Wer? bucht wann? Was? Wohin? Unter Einhaltung welcher
Regeln? Mit welcher Zuverlassigkeit? Mit welcher
Verflugbarkeit?

0O0AD Prof. Dr. 112
Stephan Kleuker

Erkennen von Nominalisierungen

Fragen/Vorgehen:
e |ntuition, Sprachgefuhl
e Suche nach ahnlichem Prozesswort

e Sprachtest durch Einsetzen in "ein(e) andauernde(r) ...". Wahre
Substantive passen nicht in diese Aussage

Beispiele:

e Beider Auswahl der Auszahlungsfunktion soll die ...
e der Anzeige, Nutzungsfiihrung, Bestatigung,

e die Eingabe, Erfassung,

e das Ereignis, die Meldung, ...

e die Buchung, Ausgabe, Priufung,

Anmerkung: Nominalisierung wird oft auch als Tilgung angesehen
http://nlpportal.org/nlpedia/wiki/Metamodell

00AD Prof. Dr. 113
Stephan Kleuker

http://nlpportal.org/nlpedia/wiki/Metamodell

Entwicklung strukturierter Anforderungen

e ein Ansatz zu qualitativ hochwertigen Anforderungen: erste
Version erstellen und dann Textqualitat schrittweise
verbessern

e Alternative: ,von Anfang an“ hochwertige Anforderungen zu
schreiben

e Dieser Ansatz kann durch Anforderungsschablonen unterstutzt
werden, die den Satzbau von Anforderungen vorgeben
(vorgestellter Ansatz folgt [RS])

e Man beachte, bereits erwahnte Ausdrucksprobleme auch in
diesem Ansatz noch relevant

0O0AD Prof. Dr. 114
Stephan Kleuker

Charakterisierung von Systemaktivitaten

e Selbstandige Systemaktivitat:
Das System fiihrt den Prozess selbstéindig durch.
e Nutzungsinteraktion:

Das System stellt der nutzenden Person die
Prozessfunktionalitat zur Verfiigung.

e Schnittstellenanforderung:

Das System fuhrt einen Prozess in Abhdngigkeit von einem
Dritten (zum Beispiel einem Fremdsystem) aus, ist an sich
passiv und wartet auf ein externes Ereignis

e Flr jede dieser Systemaktivitaten gibt es eine Schablone

e Frage: Werden Systemaktivitaten so in disjunkte Klassen
aufgeteilt?

0O0AD Prof. Dr. 115
Stephan Kleuker

Visualisierung der Systemaktivitaten e s

Typ 2 Anforderungen: Typ 1 Anforderungen:
Funktionalitat zur System fuhrt Prozess
Verfugung stellen aus

macht : g System-Kern

Eingaben: stéBtan |
Nutzung |

0

--

®
~
@
-
@
S
>
)
S
“
————
S|I9ISHIUYIS

r——

Typ 3 Anforderungen:
System fahig, externe
Anfrage zu bearbeiten

0O0AD Prof. Dr. 116
Stephan Kleuker

Anforderungsformulierung (Rupp-Schablone)

HHHHHHHHHHHHHHHHHHH

MUSS

<Wann?>
<Randbe-
dingung>

/

soll

\

N\

wird

/

<Prozess-
wort>

Typ 1
,//////////-Ty;75\\\\\\
das ‘ <wem?> die <Objekt mit
Svstem Maoglichkeit Randbedin-
y ~\bieten / gung>
fahig sein ITyp 3

Typ 1: Selbstandige Systemaktivitat, System fihrt Prozess selbstandig durch, z. B.
Berechnung des bisherigen Aufwandes eines Projekts durch Abfrage aller
Teilprojekte und Ergebnisanzeige

Typ 2: Nutzungsinteraktion, System stellt der nutzenden Person die

Prozessfunktionalitat zur Verfliigung, z: B. Verfugbarkeit eines Eingabefeldes, um
den Projektdaten einzugeben
Typ 3: Schnittstellenanforderung, d. h. das System fuhrt einen Prozess in
Abhangigkeit von einem Dritten (zum Beispiel einem Fremdsystem) aus, ist an
sich passiv und wartet auf ein externes Ereignis, z. B. Anfrage einer anderen
Blirosoftware nach einer Ubersicht tiber die laufenden Projekte annehmen

OOAD

S

Prof. Dr.
tephan Kleuker

117

Typ 1: Selbstandige Systemaktivitat

HHHHHHHHHHHHHHHHHHH

<Wann?>
<Randbe-
dingung>

/—\

soll

N\

wird

das

Typ 1

/ Tyr&
‘ <wem?> die

System |

/

Maoglichkeit

<Objekt mit
Randbedin-

<Prozess-
wort>

fahig sein

\bieten / gung>

Typ 3

Nach Abschluss der Eingabe (mit ,Return“-Taste oder
Bestatigungsknopf) bei der Bearbeitung von Daten muss das
System neu eingegebene Daten in seine permanente
Datenhaltung Gbernehmen. [,Daten”im Glossar konkretisieren]
Nach der Eingabe eines neuen Teilprojekts oder einer neuen
Projektaufgabe und nach der Aktualisierung des Aufwandes
eines Teilprojekts oder einer neuen Projektaufgabe muss das
System die Aufwandsangaben auf Plausibilitat prufen.

OOAD

Prof. Dr.

Stephan Kleuker

118

Typ 2: Nutzungsinteraktion

HHHHHHHHHHHHHHHHHHH

MUSS

<Wann?>
<Randbe-
dingung>

/

In der Projektbearbeitung muss das System der nutzenden

soll

\

N\

wird

/

<Prozess-
wort>

Typ 1
,//////////-Ty;75\\\\\\
das ‘ <wem?> die <Objekt mit
Svstem Maoglichkeit Randbedin-
y ~\bieten / gung>
fahig sein ITyp 3

Person die Moglichkeit bieten, ein neues Projekt mit
Projektausgangsdaten anzulegen.

In der Projektbearbeitung muss das System der nutzenden
Person die Moglichkeit bieten, jedes Projekt auszuwahlen.
Nach der Projektauswahl muss das System der nutzenden

Person die Moglichkeit bieten, flr existierende Projekte neue
Teilprojekte anzulegen.

OOAD

Prof. Dr.

Stephan Kleuker

119

Typ 3: Schnittstellenanforderung

HHHHHHHHHHHHHHHHHHH

<Wann?>
<Randbe-
dingung>

/—\

N/

wird

<Prozess-
wort>

Typ 1
,//////////-Ty;75\\\\\\
das ‘ <wem?> die <Objekt mit
Svstem Maoglichkeit Randbedin-
y ~\bieten / gung>
fahig sein ITyp 3

Nach der Kontaktaufnahme durch die Software ,,Globalview” muss
das System fahig sein, Anfragen nach den Projektnamen, deren
Gesamtaufwanden und Fertigstellungsgraden anzunehmen.

Beispiel: WebService-Schnittstellen werden so beschrieben

(folgt Typ2: Nach der Annahme der Anfrage ...)

OOAD

Prof. Dr.

Stephan Kleuker

120

Vom Aktivitdtsdiagramm zur textuellen Anforderung...........

e Jede Aktion wird mit einer Anforderung oder mehreren
Anforderungen beschrieben

e Jede Entscheidung wird mit einer Anforderung oder mehreren
Anforderungen beschrieben

e Aus dem Ablauf der zur Aktion oder Entscheidung fuhrt, wird
der erste Teil der jeweiligen Anforderung (,Wann?“) erzeugt

e Hinweis: Anforderungen zum Beispiel stehen im folgenden
Kapitel

0O0AD Prof. Dr. 121
Stephan Kleuker

Beispiellibersetzung (Fragment)

HOCHSCHULE OSNABRUCK
UNIVERSITY Of IED SCIENCES

2: Nachdem das System gestartet wurde™
muss das System der nutzenden Person
die Moglichkeit bieten, die Seriennummer
der Banknote einzugeben

v

g [Seriennummer der]

Note erfassen

1: Nach Eingabe der Banknote, muss daS
System die eingegebene Seriennummer
in der Verbrechensdatei suchen.

[Seriennumer

[Seriennumer

1: Wenn die Seriennummer in der -
Verbrechensdatei gefunden wurde, muss
das System ein Warnfenster mit den
Tatinformationen ausgeben.

2: Wenn die Seriennummer nicht in der -
Verbrechensdatei gefunden wurde, muss
das System der nutzenden Person die
Moglichkeit bieten, den Fundort und den

in Verbrethensdatei]

nicht in
Verbrechens-
datei] Warnfenster mit
__________ | Tatinformationen
ausgeben
_ __ | Fundort und -zeit
N eingeben

Zeitpunkt des Fundes einzugeben.

00AD Prof. Dr.

Stephan

Kleuker

122

LNicht-funktionaIe Anforderungen (1/2) [sehr kurz]

4.5 Video

Bisher lag der Schwerpunkt auf funktionalen Anforderungen
,Was muss das System machen”
technische Anforderungen:
— Hardwareanforderungen
— Architekturanforderungen
— Anforderungen an die Programmiersprachen
Anforderungen an die Benutzungsschnittstelle:
— Form und Funktion von Ein- und Ausgabe-Geraten
— (gesamter Ergonomie-Bereich)
Anforderungen an die Dienstqualitdt:
— DIN EN ISO 66272 unterteilt die Dienstglte in die funf
Merkmale Zuverlassigkeit, Benutzbarkeit, Effizienz,
Anderbarkeit und Ubertragbarkeit

0O0AD Prof. Dr. 123

Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

https://youtu.be/8--_8Y2GkGc

Nicht-Funktionale Anforderungen (2/2)

e Anforderungen an sonstige Lieferbestandteile, z. B.
— Systemhandbicher
— Installationshandbucher
e Anforderungen an die Durchfiihrung der Entwicklung und
Einflihrung, z. B.
— Anforderungen an die Vorgehensweise
— anzuwendende Standards
— Hilfsmittel (Tools)
— Durchfihrung von Besprechungen,
— Abnahmetests (fachliche Abnahme, betriebliche Abnahme)
e rechtlich-vertraglichen Anforderungen, z. B.
— Zahlungsmeilensteine
— Vertragsstrafen
— Umgang mit Anderungen
— Eskalationspfade

00AD Prof. Dr. 124
Stephan Kleuker

Varianten der Anforderungsermittiung (1/3)

e Persona: Konkretisierung von Stakeholdern, insbesondere
nutzenden Personen als konkrete Individuen

e Bsp.: Lara, 27 Jahre, Wirtschaftsinformatik, 4 Jahre im
Unternehmen, Projektleiterin, liebt strukturierte
Vorgehensweisen, mag viele Visualisierungen von
Zusammenhangen, macht privat einen Origami-Blog, halt als
Haustier eine Boa

e Persona helfen in der Analyse tatigen Personen manchmal sich
in konkrete Ablaufe und Handlungsweisen einzudenken

e Persona werden gerne in kreativen Bereichen, wie Usability und
Interaction Design genutzt

00AD Prof. Dr. 125
Stephan Kleuker

Varianten der Anforderungsermittlung (2/3)

e Epic: Beschreibung typischer Arbeitsablaufe spaterer
nutzenden Personen (klarer Anfang, eindeutiges Ergebnis)

-> ahnlich einsetzbar wie Use Cases, konnen auch
Aktivitatsdiagrammerstellung unterstitzen

00AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

126

Varianten der Anforderungsermittlung (3/3) s

e User Story (u. a. in Extreme Programming): Fokus auf eine von
einer bestimmen Rolle gewtlinschten Funktionalitat

e abstrakt: Als <Stakeholder in folgender Rolle> mdéchte ich
<geforderte Funktionalitat> um <gewilinschter Nutzen>.

e Als Projektleitung mochte ich den aktuellen Stand an
verbrauchten Arbeitsstunden der Arbeitspakete kompakt
Uberblicken, um zu bewerten, ob aktuelle Planungsziele
erreicht werden konnen.

-> User Stories verfeinern Epics und stellen damit Teile von
Ablaufen von Aktivitatsdiagrammen dar

e User Storys sind alternativ/erganzend zur vorgestellten
Anforderungsanalyse nutzbar

00AD Prof. Dr. 127
Stephan Kleuker

Lastenheft / Pflichtenheft

4.6
e Lastenheft wird vom auftraggebenden Unternehmen (AG)
geschrieben

— welche Funktionalitat ist gewlinscht
— welche Randbedingungen (SW/ HW) gibt es

e Pflichtenheft wird vom auftragnehmenden Unternehmen (AN)
(Software-Entwicklung) geschrieben

— welche Funktionalitat wird realisiert
— auf welcher Hardware lauft das System
— welche SW-Schnittstellen (Versionen) berlicksichtigt

e Variante: AG beauftragt AN direkt in Zusammenarbeit
Pflichtenheft zu erstellen

— ein gemeinsames Heft ist sinnvoll
— Pflichtenheft ist meist (branchenabhangig) zu bezahlen

Prof. Dr. 128
Stephan Kleuker

OOAD

Lastenheft / Pflichtenheft: moglicher Aufbau

0. Administrative Daten: von wem, wann genehmigt, ...

1. Zielbestimmung und Zielgruppen
In welcher Umgebung soll System eingesetzt werden?
Ziele des Systems, welche Stakeholder betroffen?

2. Funktionale Anforderungen
Produktfunktionen (Use Cases, Aktivitatsd., Anforderungen)
Produktschnittstellen (a. GUI-Konzept b. andere SW)

3. Nichtfunktionale Anforderungen
Qualitatsanforderungen
weitere technische Anforderungen

4. Lieferumfang

5. Abnahmekriterien

6. Anhange (insbesondere Glossar)

OO0AD Prof. Dr. 129
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

5. Grobdesign

m 5.1 Systemarchitektur
B 5.2 Ableitung von grundlegenden Klassen
1 5.3 Ableitung von Methoden und Kontrollklassen
1 5.4 Validierung mit Sequenzdiagrammen
™ 5.5 Uberlegungen zur Oberflaichenentwicklung
00AD Prof. Dr. 130

Stephan Kleuker

https://youtu.be/w2k1ROtIBUM

LSystemarchite ktur o e
5.1

Festlegen der Randbedingungen bzgl. Hardware, Betriebssystem,
verwendeter Software, zu integrierender Systeme

e Vorgabe der Hardware, die Software muss z. B. auf einer
Spezialhardware funktionieren

e Vorgabe des Betriebssystems, die Software muss eventuell mit
anderer Software auf Systemebene zusammenarbeiten

e \orgabe der Middleware, die Software wird haufig auf
verschiedene Prozesse verteilt, die miteinander kommunizieren
mussen

e \orgaben zu Schnittstellen und Programmiersprachen, die
Software soll mit anderer Software kommunizieren und muss
dabei deren Schnittstellen berlicksichtigen

e Vorgaben zum ,Persistenz-Framework®, die Daten der zu
erstellenden Software muissen typischerweise langfristig

gespeichert werden
00AD Prof. Dr. 131

Stephan Kleuker

Klassenmodellierung fiir OO-Programmier*innen |.........

.23 Generell soll im Grobdesign eine erste Klassenmodellierung
stattfinden, die die gesamte geforderte Funktionalitat abdeckt

e Hauptaufgabe des Klassenmodells, auch Domain-Model
genannt, ist damit die Vollstandigkeit

e Danach wird Domain-Model im Feindesign in Richtung
effizienter Programmierung, z. B. mit Hilfe von Design-Pattern,
optimiert

e in OO erfahrende programmierende Personen (HS OS, 4.
Semester), kdnnen bereits im Domain-Model sinnvolle
Optimierungen (d. h. Nutzung guter Design-Regeln) vornehmen

e Deshalb werden hier UML-Klassendiagramme und
Sequenzdiagramme fur Personen mit Programmiererfahrung
vorgestellt

00AD Prof. Dr. 132
Stephan Kleuker

Modellierungsaufgabe

Es soll eine SW zur Verwaltung von mitarbeitenden Personen
mit ihren Fahigkeiten erstellt werden.

Die Software soll Projekte verwalten, denen mitarbeitende
Personen zugeordnet und ein Scrum Master aus den
mitarbeitenden Personen zugeordnet werden kdnnen.

Mitarbeitende Personen konnen in verschiedenen Projekten
mitarbeiten, dazu wird festgelegt, von wann bis wann sie zu
welchem Prozentanteil mitarbeiten.

(Achtung, dies ist keine sinnvolle Anforderungsanalyse)

wichtiger Hinweis: Die UML und damit Klassendiagramme sind
programmiersprachenunabhangig, deshalb gibt es auch Teile
von Java, die nicht in UML (ohne Erweiterungen) darstellbar
sind [und andersherum]

0O0AD Prof. Dr. 133

Stephan Kleuker

Erinnerung: Java-Grundregeln fiir Klassen s

Klassenname in Einzahl (Nomen oder Nominalisierend: Mltarbeltend)

Objektvariablen (= Instanzvariablen) sind immer private; bei
Vererbung auch protected moglich

gibt immer parameterlosen Konstruktor
gibt fir jede Objektvariable get- und set-Methode

letzten beiden Regeln werden von vielen Java-Frameworks, auch Java
selbst bei XML-Nutzung, benotigt

gibt immer toString()-Methode zur Objektvisualisierung

gibt (fast) immer equals()- und hashCode()-Methode

alle genannten Konstruktoren und Methoden sind generierbar
Sie halten sich an Java-Coding-Guidelines; Einstieg dazu Uber

http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf

0O0AD Prof. Dr. 134
Stephan Kleuker

http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf

Klasse Mitarbeitend (1/3) = | -

public class Mitarbeitend {

private int id;

private String name;

private static int idCount = 1000;
in franzosischen Anfuhrungsstrichen
stehen optionale Stereotypen; diese
bietet die UML als Markierungs-urd - «entity»

Erweiterungsmoglichkeit; sind fir : .
Klassendiagramme nicht vorgegeb&/M'tarbe'tend

Klassenname (evtl. Paket davor) - 1d: int .
- name: String
Objektvariaben mit - idCount: int = 1000

<Sichtbarkeit> <Name>: <Typ> /

Klassenvariablen sind unterstrichen

Startwerte konnen fur alle Variable

angegeben werden
0O0AD Prof. Dr. 135
Stephan Kleuker

Klasse Mitarbeitend (2/3) = | -

public Mitarbeitend() { Konstruktor mit
this.id = Mitarbeitend.idCount++; <Sichtbarkeit> <Name>
} (<Parameterliste>)
public Mitarbeitend(String name) { \\A
this(); : T
: + Mitarbeitend()
this.name = name; é g :
} ’ + Mitarbeitend(String)
.. : + getld(): int
public int getId {return id;} d
. . & (). , + setld(int)
public void setId(int id) { + getName()' String
this.id = id; pe
} + setNanK(Stnng)
public String getName() { Methode mit

return this.name; <Sichtbarkeit> <Name>

} (<Parameterliste>),

public void setName(String name) { optional Parameternamen
this.name = name; angebbar

}OOAD Prof. Dr. 136

Stephan Kleuker

Klasse Mitarbeitend (3/3)

public static int wertIdCount() {

return Mitarbeitend.

}
}
Sichtbarkeiten:
+: public
-: private
#: protected

idCount;

~ : (nicht genau package-protected

wie in Java)

Riuckgabetyp void weglassbar

Klassenmethoden sind unterstrichen

mit <Sichtbarkeit> <Name>

(<Parameterliste>)

OOAD

Prof. Dr.
Stephan Kleuker

«entity»
Mitarbeitend

- id: int
- name: String
- idCount: int = 1000

+ Mitarbeitend()

+ Mitarbeitend(String)
+ getld(): int

+ setld(int)

+ getName(): String

+ setName(String)

>+ wertldCount(): int

137

HHHHHHHHHHHHHHHHHHH

Inkrementelle Entwicklung mit UML

e generell kdnnen fast alle Informationen weggelassen und
spater erganzt werden

< »

HOCHSCHULE OSNABRUCK

e wird Klasse in anderen Klassendiagrammen gezeigt, wird auch
oft nur der Kasten gezeigt

Mitarbeitend

«entity»
Mitarbeitend
id
name
idCount

«entity» «entity»
Mitarbeitend Mitarbeitend
- id: int - id: int
- name: String - name: String

- idCount: int = 1000

- idCount: int = 1000

«entity»
Mitarbeitend

- id: int
- name: String

- idCount: int = 1000

+ Mitarbeitend()

+ Mitarbeitend(String)
+ getld(): int

+ setld(int)

+ getName(): String

+ setName(String)

+ wertldCount(): int

OOAD

Prof. Dr.
Stephan Kleuker

+ Mitarbeitend()

+ Mitarbeitend(name:String)
+ getld(): int

+ setld(id:int): void

+ getName(): String

+ setName(name:String): void

+ wertldCount(): int

-- beschreibt in Projekten
mitarbeitende Person

138

Dynamische Modellierung mit Sequenzdiagrammen |..............

e Klassendiagramme sind statisch und zeigen ,,nur” Aufbau

e Beispielablaufe mit Sequenzdiagrammen darstellbar

e Beispiel: jemand/irgendein Objekt erzeugt Mitarbeitend und
andert den Namen

extern <—— hier stehen Objekte die vor dem Start existieren

|
| new Mitarbeitend("Ana")

' > ‘Mitarbeitend
:<_________________________| \

| Objekt wird neu erstellt,

| ’i immer unterschrichen,
E< -------------------- .. vor Doppelpunkt kann
Lebenslinie, Zeit vergeht Name stehen
von oben nach unten \

Methodenaufruf (mit Beispielparametern Ablaufkontrc?lle geht zurick,
oder freien Variablennamen) kann Ergebnis enthalten

0O0AD Prof. Dr. 139
Stephan Kleuker

Algorithmen mit Sequenzdiagrammen ... o

e Sequenzdiagramm zeigt Vertauschen von Namen

extern m1:Mitarbeitend m2:Mitarbeitend <_‘

| | |

% galiame)) >i i diese Objekte

gressseBlessasus | | existieren beim

| getName() ;i Diagrammstart,

:K_____________gg:r _____________ i haben Namen

| setName(n2) : (hier unnotig)

| | |

S : :

| setName(n1) > man kann Pfeilen

1 S —— ST | immer durchgehend

| | |

folgen —
“extern” nicht Teil der UML, —
schliel3t aber Diagramme ab é — -
-
Prof. Dr. 140

OOAD

Stephan Kleuker

Zusammenhang: Programm und Sequenzdiagramm |............

public class A { extern A b:B
private B b= new B();

private C c; mach(422
public char mach(int x){ tues(42)
int t= b.tues(x); >
c= new C(t,t+1); G a2 .

return b.yeah(c); new Ct42 43)
} —

} S SO
public class B {

public int tues(int x){
return x%255; sachA()

} >

pUblic char yeah(c C){ o X CIITITTTOTIIPPPPIre
char e=c.sachA(); oo Vo
return (char) (e+l); oy

OO0AD Prof. Dr. 141
Stephan Kleuker

Mitarbeitend-Objekt hat Sammlung von Fahigkeiten ...

Video
e Faehigkeit ist Enumeration

e Umsetzung in Java:
public enum Faehigkeit {
JAVA, C, GO, MASTER, PRODUCTOWNER

}

e in Mitarbeitend:
private Set<Faehigkeit> faehigkeiten;

public void hinzuFaehigkeit(Faehigkeit f) {
this.faehigkeiten.add(f);

}

public boolean hatFaehigkeit(Faehigkeit f) {
return this.faehigkeiten.contains(f);

}

00AD Prof. Dr. 142
Stephan Kleuker

https://youtu.be/lnPfIqENmVs

Sammlungen in Klassendiagrammen

HHHHHHHHHHHHHHHHHHH

gerichtete Assoziation, Klasse hat Objektvariable

von Typ anderer Klasse

Objektvariable von Mitarbeitend

«entity»
Mitarbeitend

- id: int
- name: String
- idCount: int = 1000

-faehigkeiten

private faehigkeiten

N

+ Mitarbeitend()

+ Mitarbeitend(String)

+ getld(): int

+ setld(int)

+ getName(): String

+ setName(String)

+ wertldCount(): int

+ hinzuFaehigkeit(Faehigkeit)

+ hatFaehigkeit(Faehigkeit): boolean

Multiplizitaten

0 keines

1 genau eines

* beliebig viele
0..1 max. eines
3..* mindestens 3

OOAD

Prof. Dr.

Stephan Kleuker

«enumeration»
Faehigkeit

Java
C

Go
Master

ProducTown er

Aufzahlungs-
werte angeben

143

Assoziation genauer

«entity» -faehigkeiten «enumeration»
Mitarbeitend | =+ * Faehigkeit

e Pfeil gibt an, dass nur Mitarbeitend-Objekte ihre Fahigkeiten
kennen, nicht anders herum

e ohne Pfeilspitze unterspezifiziert, bzw. bidirektional

e *rechts: zu jedem Mitarbeitend-Objekt geh6ren beliebig viele
Faehigkeiten, die in der Variablen faehigkeiten stehen

e *links: jedes Faehigkeits-Objekt kann in beliebig vielen
Mitarbeitend-Objekten vorkommen (dies sieht man nicht im
Code, ist aber Teil der Modellierung; ist damit Randbedingung)

e ohne weitere Angaben ist Art der Sammlung bzw. Collection
(List, Map, Set, MultiSet) unterspezifiziert

o -faehigkeiten steht auf der rechten Seite, nicht in der Mitte!

00AD Prof. Dr. 144
Stephan Kleuker

neues Mitarbeitend-Objekt mit Faehigkeiten

new Mitarbeitend("Leila") » m:Mitarbeitend

- TN, o
I
| hinzuFaehigkeit(Faehigkeit GO)
R -.WZ i
I
| hatFaehigkeit(Faehigkeit. JAVA) ’:
|
| I
€ e false ___________ :

e deshalb ist HashSet-Objekt hier nicht sichtbar
e meist werden solche Collections weggelassen
e naturlich kdnnen alle Objekte eingezeichnet werden

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

in Sequenzdiagrammen nur ,wichtige” Klassen flir Verstandnis

145

neues Mitarbeiten-Objekt mit Faehigkeiten - genauer.........

extern

I

| new Mitarbeitend("LeiIa"L m:Mitarbeitend

._new HashSet() | faehigkeiten:HashSet
|

< _______________________

| add(Faehigkeit. GO)

< _______________________ -

e hier wurde Set-Objekt zur Veranschaulichung eingetragen

e (werden wir in der Veranstaltung nicht machen)

0O0AD Prof. Dr. 146
Stephan Kleuker

Wer erstellt Mitarbeitend-Objekte

e zumindest bei Entitaten soll es nur eine Klasse geben, die
Objekte erzeugt

e typischerweise Controller- oder Verwaltungsklasse

e Controller ist einzige Moglichkeit fir CRUD

e Mitarbeitend-Objekt zu erzeugen (CREATE)

e Mitarbeitend-Objekt (liber Schlissel) zu finden (READ)
e Mitarbeitend-Objekt zu verandern (UPDATE)

e Mitarbeitend-Objekt zu |I6schen (DELETE)

e alle Veranderungen und Befragungen von Mitarbeitend-
Objekten, hier zu Fahigkeiten, findet Gber diese Klasse statt

e (ab jetzt get- und set- sowie Java-libliche Methoden
weggelassen)

0O0AD Prof. Dr. 147
Stephan Kleuker

MitarbeitendController in Java (1/2)

public class MitarbeitendController {
private Map<Integer,Mitarbeitend> mitarbeitende;

public MitarbeitendController() {
this.mitarbeitende = new HashMap<>();

}

public int neuMitarbeitend(String name) {
Mitarbeitend tmp = new Mitarbeitend(name);
this.mitarbeitende.put(tmp.getId(), tmp);
return tmp.getId();

}

public Mitarbeitend findeMitarbeitend(int id) {
return this.mitarbeitende.get(id);

}

public Mitarbeitend loescheMitarbeit(int id) {
return this.mitarbeitende.remove(id);

}

0O0AD Prof. Dr. 148
Stephan Kleuker

MitarbeitendController in Java (2/2)

public void aendereMitarbeitend(int id, String name) {
Mitarbeitend tmp = this.findeMitarbeitend(id);
if (tmp != null) {
tmp.setName(name);
}
}

public void hinzuFaehigkeit(int id, Faehigkeit f) {
Mitarbeitend tmp = this.findeMitarbeitend(id);
if (tmp != null) {
tmp.hinzuFaehigkeit(f);
}
}

public boolean hatFaehigkeit(int id, Faehigkeit f) {
Mitarbeitend tmp = this.findeMitarbeitend(id);
return tmp != null && tmp.hatFaehigkeit(f);

}

0O0AD Prof. Dr. 149
Stephan Kleuker

Modellierung: MitarbeitendController @ | ... "

«control»
MitarbeitendController

+ MitarbeitendController() “nutzt”-Beziehung
+ neuMitarbeitend(String): int :
+ findeMitarbeitend(int): Mitarbeiter (Klasse kommt im Code
+ aendereMitarbeitend(int, String) vor, gibt aber keine
+ loescheMitarbeitend(int) Obiek bl
+ hinzuFaehigkeit(int, Faehigkeit) .. Objektvariable)
+ hatFaehigkeit(int, Faehigkeit): boolean \\ J
jedes Mitarbeitend in—>|4
genau einem Controller
-mitarbeiter |* %
AR
«entity» -faehigkeiten «enumeration»
Mitarbeiter | * * Faehigkeit

Objektvariable vom Typ Sammlung in MitarbeitendController

0O0AD Prof. Dr. 150
Stephan Kleuker

Mitarbeitend-Objekt mit Fahigkeiten anlegen ... o

e typisch: Weiterleitung (Delegation) von Controller-Aufruf an Entitat

extern mC:MitarbeitendController
neuMitarbeitend("Leila")

new Mitarbeitend("Leila")

I
g
|

p| m:Mitarbeitend

hinzuFaehigkeit(42,Faehigkeit. GO) |

e Sequenzdiagramme konnen mit sehr kurzen Fragmenten Sachverhalte
zeigen; es kann auch sinnvoll sein langere detaillierte Ablaufe zu

visualisieren

00AD Prof. Dr. 151
Stephan Kleuker

Einschub: Programmzeilen des Grauens

* Nie, nie Objektvariablen mit get oder find holen und dann
bearbeiten; Bearbeitung immer durch Controller

e OP: Herz herausoperieren, an Uni-Klinik schicken, dort Herz
korrigieren, zuriick schicken, Herz wieder einsetzen

Mitarbeitend m = mitarbeitendController.findeMitarbeitend(42);
Set<Faehigkeit> sf = m.getFaehigkeiten();
sf.add(Faehigkeit.GO);

m.setFaehigkeiten(sf); // schlecht und ohnehin ueberfluessig

e wenn Sie sowas sehen, Standardfrage: ,,Wenn Du gerne
programmierst, warum lernst Du es nicht”

00AD Prof. Dr. 152
Stephan Kleuker

< »

Projekte mit beliebig vielen Mitarbeitend-Objekten |..... ...

e gleiche Objektvariablennamen erlaubt, muss aber nicht sein

e muss nicht alle CRUD-Methoden geben

«entity»
Projekt
- id: int
- name: String

- idCount: int = 1000

+ Projekt(String)
+ hinzuMitarbeitend(Mitarbeitend)

«control»

MitarbeitendController |

1

-mitarbeitende |*

-mitarbeitende «entity»

OOAD

-faehigkeiten

N

«* “|Mitarbeitend [=

Prof. Dr.
Stephan Kleuker

*

«enumeration»
Faehigkeit

153

Design-Entscheidung uilber Modellierung hinaus ... -

«entity» -mitarbeitende «entity»
Projekt * « “|Mitarbeitend

e Design-Entscheidung: Projekt kennt seine Mitarbeitend-Objekte;
sollen zu Mitarbeitend-Objekt alle Projekte bestimmt werden, muss
tber alle Projekte iteriert werden

«entity» | _-projekte «entity»
Projekt |[>* « |Mitarbeitend

e wenn Projekte von Mitarbeitend-Objekten zu suchen sehr wichtig,
dann Assoziation umdrehen

«entity» | -projekte -mitarbeitende «entity»
Projekt * « |Mitarbeitend

e wenn beide Richtungen sehr wichtig, dann bidirektional (moglichst

vermeiden, da spater fehleranfallig; nicht immer vermeidbar)

0O0AD Prof. Dr. 154
Stephan Kleuker

Jedes Projekt kann einen Scrum-Master haben

HHHHHHHHHHHHHHHHHHH

e kann mehrere Assoziationen zwischen zwei Klassen geben

«entity»
Projekt

- id: int
- name: String
- idCount: int = 1000

-mitarbeitend

+ Projekt(String)
+ hinzuMitarbeitend(Mitarbeitend)

*

-master

0..1

«entity»
Mitarbeitend

e Erinnerung: existierende Methoden setMaster() und

getMaster() nicht mehr angegeben

e Frage wo gepruft wird, ob Mitarbeitend-Objekt Fahigkeit

,MASTER" hat, bleibt offen

0O0AD Prof. Dr.
Stephan Kleuker

155

ProjektController s i

«control»

ProjektController nutzt Controller, um zu einer id

Mitarbeitend-Objekt zu finden

+ ProjektController(MitarbeitendController)
+ neuesProjekt(String): int -mc
+ findeProjekt(int): Projekt 3 e L
+ aendereProjekt(int,String) MitarbeitendController
+ loescheProjekt(int) 1
+ hinzuMitarbeitend(pr:int, ma:int)
+ setzeMaster(pr:int, ma:int)
1 \
Parameternamen sinnvoll,
_projekte |+ um sie zu unterscheiden -Mitarbeitende *
-mitarbeitende :
«entity» * * _«entlt.y»
Projekt Mitarbeitend
-master
: 0..1
OO0AD Prof. Dr. 156

Stephan Kleuker

neues Projekt mit Master erzeugen

HHHHHHHHHHHHHHHHHHH

extern :ProjektController mC:MitarbeitendController

|
neuesProjekt("GUI") !

I |
| |
f " . 1] " I
| i< new Projekt("GUI") > p:Prgliekt |
| T T T N ST T o) |
<o S : | :
| setzeMaster(41,42) h:) |
! | findeMitarbeitend(42) | Nl
| | ' |
: oo Mooeeee
| | setMaster(m) ! |
| I ’: |
| | |
| P s i e s i ; |
| , |

spater sehen wir, dass auch in Sequenzdiagrammen gepruft
werden kann, ob m == null gilt

0O0AD Prof. Dr.
Stephan Kleuker

157

Erweiterung: Mitarbeitend-Objekt anteilig zuordnen ... o

e Jede mitarbeitende Person arbeitet von einem Datum bis einem
Datum zu einem bestimmten Prozentanteil in einem Projekt

e weder auf einer, noch auf beiden Seiten macht folgendes Sinn:

«entity»
Projekt

- id: int
- name: String

- idCount: int = 1000

- von: Date
- nach: Date
- anteil: int

d

-mitarbeitende

«entity»

Mitarbeitend

*

*

-master

0..1

- id: int
- name: String

- iIdCount: int = 100

- von: Date
- nach: Date
- anteil: int

d

e entweder: jede mitarbeitende Person eines Projekts muss zum
gleichen Datum mit gleichen Anteil starten und beenden

e oder: jedes Projekt einer mitarbeitenden Person muss zum
gleichen Datum mit gleichen Anteil starten und beenden

OOAD

Prof. Dr.
Stephan Kleuker

158

Standardlosung: Koppelentitat

< »

HOCHSCHULE OSNABRUCK

e Erinnerung: Ubersetzung von M:N-Beziehungen von ER-

Diagrammen in Tabellen

«entity»
Projekt

- id: int

- name: String
- idCount: int = 1000

+ Projekt(String)

+ hinzuMitarbeitend(Mitarbeitend,an:int,v:Date,b:Date)

«entity»
Mitarbeitend
- id: int
- name: String
- “int =
_master _|—dCount: int = 1000
i 0..1

1

«entity»
Mitarbeit

- id:int' _ -mitarbeitend

. — « |- anteil: int * 1
-mitarbeiten |- yvon: Date
- bis: Date

Prof. Dr.

OOAD

Stephan Kleuker

+ Mitarbeitend()

+ Mitarbeitend(String)
+ getld(): int

+ setld(int)

+ getName(): String

+ setName(String)

+ wertldCount(): int

+ hinzuFaehigkeit(Faehigkeit)
+ hatFaehigkeit(Faehigkeit): boolean

159

< »

Mitarbeitend-Objekt zum Projekt hinzufuegen
extemn pC:ProjektController mC:MitarbeitendController
| |
neuesProjekt("GUI") ’:
. new Projekt DrAi
: (IIGUIH) ’m-lelt

(E e i

hinzuMitarbeitend (41,42 h:

30,1.3.2020,31.8.2020) " findeMitarbeitend(42)
|
|
|

hinzuMitarbeitend(m !

Y= s

w Mitarbeit(m,30

I
"30,1.3.2020,31.8.2020]_n Mitarbei
| ~1.3.2020,31 8.2020)Rlarbel
. O .
e s S |
e e i L |
| I | |
0O0AD Prof. Dr. 160

Stephan Kleuker

Zwischenstand zum Zoomen

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 0 SCIENCES

«control»
ProjektController

+ ProjektController(MitarbeitendController)

+ neuesProjekt(String): int

«control»
MitarbeitendController

+ MitarbeitendController()
+ neuMitarbeitend(String): int

-mc
+ findeProjekt(int): Projekt 1 R findeMitarbeitend(int): Miitarbeitend
+ aendereProjekt(int,String) + aendereMitarbeitend(int, String)
+ loescheProjekt(int) + loescheMitarbeitend(int)
+ hinzuMitarbeitend(pr:int, ma:int, an:int, v:Date, b:Date) + hinzuFaehigkeit(int, Faehigkeit) R
+ setzeMaster(pr:int, ma:int) + hatFaehigkeit(int, Faehigkeit): boolean \\
1 1 N
-projekte [* -mitarbeitende |* "
«entity» «entity» \\\
Projekt Mitarbeitend N
- id: int - id: int s «enumeration»
- name: String - name: String . -faehngkenter: Faehigkeit
- idCount: int = 1000 -master _ |dCount: int = 1000 Java
+ Projekt(String) * 0.1 C
+ hinzuMitarbeitend(Mitarbeitend, an:int, v:Date, b:Da - + Mitarbeitend() Go
+ Mitarbeitend(String) Master
1 . + getld(): int Productowner
«entity» + setld(int)
Mitarbeit + getName(): String
- id:int -mitarbeitend _ |+ setName(String)
' —* ~|-anteil: int 1 7|+ wertldCount(): int
-mitarbeiten |- yvon: Date + hinzuFaehigkeit(Faehigkeit)
- bis: Date + hatFaehigkeit(Faehigkeit): boolean
0O0AD Prof. Dr. 161

Stephan Kleuker

Flexibilisierung mit Interfaces

Konzept der bisherigen Controller ok, allerdings bis jetzt rein lokale
Datenhaltung

Realitat: Daten befinden sich in einer Datenbank

Controller nutzt Datenbankverbindung, um Entitatsobjekte zu
verwalten (CRUD)

DB-Verwaltung wird typischerweise von eigener SW Ubernommen;
z. B. objekt-relationale Mapper fir relationale Datenbanken

Java-Standardlosung: JPA (s. Software-Architektur, 5. Semester)

schon ware, wenn einfach zwischen verschiedenen Losungen
umgeschaltet werden konnte

Ansatz: nur Methoden spezifizieren (also abstract) und
verschiedene Implementierungen anbieten

00AD Prof. Dr. 162

Stephan Kleuker

< »

Interface in UML

Stereotyp <<interface>> > «interface»

alle Methoden abstract Mlt.arbeit.endCont.rolIer.lnterface
+ neuMitarbeitend(String): int

+ findeMitarbeitend(int): Mitarbeitend
+ aendereMitarbeitend(int, String)

. . . . + loescheMitarbeitend(int)
realisiert-Pfeil, gestrichelt |, hinzuFaehigkeit(int, Faehigkeit)

mit offenen Dreieck als + hatFaehigkeit(int, Faehigkeit): boolean

A
Pfeilspitze |
P \\\§$____________J_ _______________ :
| |
| |
«control» «control»
MitarbeitendController MitarbeitendControllerDB
+ MitarbeitendController() + MitarbeitendController()
+ neuerMitarbeitend(String): int + neuMitarbeitend(String): int
+ findeMitarbeitend(int): Mitarbeitend + findeMitarbeitend(int): Mitarbeitend
+ aendereMitarbeitend(int, String) + aendereMitarbeitend(int, String)
+ loescheMitarbeitend(int) + loescheMitarbeitend(int)
+ hinzuFaehigkeit(int, Faehigkeit) + hinzuFaehigkeit(int, Faehigkeit)
+ hatFaehigkeit(int, Faehigkeit): boolean | |+ hatFaehigkeit(int, Faehigkeit): boolean

0O0AD Prof. Dr. 163
Stephan Kleuker

Teilimplementierung

< »

HOCHSCHULE OSNABRUCK

kursiv (oder <<abstract>>)
far abstrakte Methode

Stereotyp <<abstract>>

flr abstrakte Klasse
/

«interface»
MitarbeitendControllerinterface

«abstractf
MitarbeitendControllerAdapter

+ neuMitarbeitend(String): int

+ findeMitarbeitend(int): Mitarbeitend
+ aendereMitarbeitend(int, String)

+ neuMitarbeitend(String): int
+ finde Mitarbeitend(int): Mitarbeitend

+ loescheMitarbeitend(int) + aendereMitarbeitend(int, String)
+ hinzuFaehigkeit(int, Faehigkeit) + loescheMitarbeitend(int)
+ hatFaehigkeit(int, Faehigkeit): boolean + hinzuFaehigkeit(int, Faehigkeit)

+ hatFaehigkeit(int, Faehigkeit): boolean

Vererbungspfeil

alle Methoden angeben, die hier
implementiert/tberschrieben werden

N

Adapter implementiert zwei Methoden,

die der Controller nicht Uberschreibt

Prof. Dr.
Stephan Kleuker

OOAD

>

«controller»
MitarbeitendController

+ neuMitarbeitend(String): int

+ findeMitarbeitend(int): Mitarbeitend
+ aendereMitarbeitend(int, String)

+ loescheMitarbeitend(int)

164

Zwischenfazit

Beispiel zeigt einen systematischen Weg zur Erstellung eines
Klassendiagrammes

Sequenzdiagramme veranschaulichen die Dynamik, wer was wann
wo aufruft

Klassendiagramme entstehen oft an Whiteboards mit vielen Fotos fur
Zwischenergebnisse , wischen, streichen, markieren, ...

Beispiel zeigt eine sinnvolle Losung, aber weitere Themen

— es gibt Varianten bei den Rickgaben, gerade null ist diskutabel (->
Java kennt Optional (spater); generell Ergebnisklasse(n) sinnvoll)

— was passiert bei Ausnahmen
— wohin mit Konstanten (z. B. Hilfsklassen, alle knnen zugreifen)

Prof. Dr. 165

OOAD
Stephan Kleuker

Beispiel fiir Design-ldee (1/5) i

HOCHSCHULE OSNABRUCK
Video

Wenn Objektsammlungen benoétigt, gibt es haufig eine
Verwaltungsklasse (hier mal Verwaltung statt engl. Controller):

e kann Objekt anlegen Studentenverwaltung
e kann Objekt mit gegebenem
|dentifikator suchen + Studentenverwaltung()

+ neuerStudent(long, String)
+ gibStudent(long):Student

. sse
i * \L -studenten

e kann loschen

Pruefungsergebnis ; Student
- note: int =1 - matnrlong
) -student .
+ Pruefungsergebnis(Student, int) - name String
+ Student(long,String)

0O0AD Prof. Dr. 166
Stephan Kleuker

https://youtu.be/c2t1ljVl1t4

Beispiel fiir Design-ldee (2/5)

HOCHSCHULE OSNABRUCK

Objektsammlungen konnen auch Teil anderer Objekte sein, die
bieten wieder: anlegen, suchen, andern, |6schen
e Klausur bekommt Studierend und Note um Pruefungsergebnis

zu erzeugen und dann zu verwalten

Klausur

- modulid: long
- datum: Date
- pruefer: int

+ Klausur(long,Date,int)
+ pruefungsergebnisHinzu(Studierend,int)

+ gibPruefungsergebnis(Studierend):Pruefungsergebnis

*

-pruefungen

Pruefungsergebnis

1

Studierend

- note: int
+ Pruefungsergebnis(Studierend, int)

0O0AD Prof. Dr.
Stephan Kleuker

-studierend

- matnr:long
- name String

+ Studierend(long,String

—

167

Beispiel fiir Design-ldee (3/5) i

HOCHSCHULE OSNABRUCK

|dee fortgesetzt, man beachte zusatzlichen Parameter

Klausuriste Klausur
- semester:String - modulid: long
- studiengang: String - datum: Date
+ Klausurliste(String, String) - pruefer: int
+ klausurHinzu(Date,long.int) + Klausur(long,Date,int)
+ pruefungsergebnisHinzu(long,Studierend.int) + pruefungsergebnisHinzu(Studierend,int)
+ gibPruefungsergebnis(long,Studierend):Pruefungsergebnis | | + gibPruefungsergebnis(Studierend).Pruefungsergebnis
N
-klausuren |*
")y -pruefungen
Pruefungsergebnis ' Studierend
| e
- note: int ' . : stidlemad - matnr.lon'g
+ Pruefungsergebnis(Studierend, int) - name String
+ Studierend(long,String)

e Klausurliste kann Klausur anlegen und verwalten

e Klausurliste kann Klausur mitteilen ein Pruefungsergebnis
anzulegen

00AD Prof. Dr. 168
Stephan Kleuker

Beispiel fiir Design-ldee (4/5) i

HOCHSCHULE OSNABRUCK
NIVERSITY ENCES

Klausuristenverwaltung

Studierendenverwaltung

+ Klausurlistenverwaltung()

+ klausurlisteHinzu(String,String)

+ klausurHinzu(String,String.long,Date.int)

+ pruefungsergebnisHinzu(String,String long,Studierend.int)

+ gibPruefungsergebnis(String,String,long,Studierend):Pruefungsergebnis

+ Studierendenverwaltung()
+ neuStudierend(long, String)
+ gibStudierend(long):Studierend

/ -klausurlisten

Klausurliste Klausur
- semester:String - modulid: long
- studiengang: String - datum: Date
+ Klausurliste(String, String) - pruefer: int

+ klausurHinzu(Date,long.int)
+ pruefungsergebnisHinzu(long.Studierend,int)
+ gibPruefungsergebnis(long,Studierend):Pruefungsergebnis

+ Klausur(long,Date,int)
+ pruefungsergebnisHinzu(Studierend,int)

+ gibPruefungsergebnis(Studierend):Pruefungsergebnis
N
-klausuren |*
+« [-pruefungen « [-studierende
Pruefungsergebnis 1 Studierend
» il ~)
- note: int stadiersid - matnr.lon.g
+ Pruefungsergebnis(Studierend, int) - name String
+ Studierend(long,String)

- Klausurlistenverwaltung kann Klausurliste anlegen
- Klausurlistenverwaltung kann Klausurliste mitteilen,
ein Pruefungsergebnis anzulegen (tber Klausur)

0O0AD Prof. Dr. 169
Stephan Kleuker

Beispiel fiir Design-ldee (5/5) = i

e Ausblick: Objekterzeugung und erstes Prifungsergebnis

Studierendenverwaltung sv = new Studierendenverwaltung()
sv.neuStudierend(42, "Ronja");
Studierend stud = sv.gibStudierend(42);

KlausurlistenVerwaltung kv = new Klausurlistenverwaltung();
kv.klausurlisteHinzu("WS19", "Inf");

kv.klausurHinzu("Ws19", "Inf" ,4711 ,"23.12.15" ,0);
kv.pruefungsergebnisHinzu("WS19", "Inf", 4711, stud ,170);

// letzte Methode intern:

// kv sucht passende Klausurliste kli fiir ("WS19", "Inf")
// kli sucht passende Klausur kla fir ("Inf", 4711)

// kla erzeugt neues Prufungsergebnis und fugt es kla hinzu

0O0AD Prof. Dr. 170
Stephan Kleuker

Typisches Sequenzdiagramm | -

Klausurlistenverwaltung Klausuriiste Klausur

gibPruefungsergebnis !
("WS15","INF",4711,stud) P

gibPruefungsergebnis
(4711,stud)

Mg

| S TP,
AN
o

e Objekte in Kopfzeile existieren (woher uninteressant)

e 7. B. Klausur-Objekt hat Methode gibPruefungsergebnis(.,.)

e Parameter konkret (4711) oder abstrakt (stud) angebbar,
gleiches flr Ergebnisse (Riickgabewerte)

e hier interne Methode klausurSuchen(.,.) weggelassen

OO0AD Prof. Dr. 171
Stephan Kleuker

Beispiel: Initialisierung

< »

HOCHSCHULE OSNABRUCK

e Anmerkung: Typischerweise
y,befruchten” sich Entwicklung von

Klassendiagrammen und

extern
! new Klausur- :
| listen- Klausurlisten
| verwaltung() verwaltung
I

|
klausurliste- |
Hinzu("Ws13","TNF™) ’l

Sequenzdiagrammmen (Optimierung
in einem iterativen Prozess)

: new Klausurliste ‘Klausurliste
I | : ')
Ko e e e e s e |
— K |
| |
| klausurHirzu("ws19" | ; N |
:_"TN-F"FO_G‘W’I KlausurHirzu("0 0 >
| l ;4047 42) ' new Klausur ‘Klausur
| l 29 2
| l l l
: PRS—— Rforen oot .
f< ----------- 1 | '
| | | '
Prof. Dr. 172

OOAD

Stephan Kleuker

Beispiel: Anstof8 der Funktionalitat

< »

e Ablauf zeigt wieder die konsequente Delegation

e Verwaltung erhalt Auftrag, nutzt teile der Parameter Zielobjekt
zu bestimmen und gibt Aufruf mit restlichen Parametern an

Zielobjekt weiter

HOCHSCHULE OSNAB

Klausurlisten Klausuriste :Klausur
extern erwaltung
I i
pruefungsergebnlsHmz& : :
| (CWS19%INF,"00" 7 pruefungsergebnlsHanLv |
: "25.4",42,5,130) : ("00","25.4",42,5,130) ™! pruefungsergebnlsHlnsz‘|
| | | (s,130) | new Pruefungs ‘Pruefunas
| | I I ergebnis(s,130) ergebnis
| | | k: -
| | N
| s s REFISSSSESSESSS l |
___________] | |
< | | | |
00AD Prof. Dr. 173

Stephan Kleuker

RUCK

Beispiel: Projektstrukturplan o

. Projekt : .
5.2 Fallstudie |Perpetuum | I(Te”-)PTOJektI

Projektverwaltung T Aufgabe
P. Palaver (30%)
Qualitats- Projekt- Entwicklung
sicherung infrastruktur
QS-Leitung Adminstration Entwicklungsleitung
G.Genau (30%) S. Super (20%) P. Palaver (70%)
Test Installation
P. Penibel (100%) P. Prokel (50%)
Sicherung

S. Safe (20%)

O berflachen- Business-
entwicklung modell
Programmierung Analyse Programmierung
W. Widget (100 %) S. Schlaubi (100 %) E. Entitat (100 %)

Datenbank-
anbindung

Programmierung
M. Muster (100 %)

Programmierung
H. Hack (100 %)

O0AD Prof. Dr. 174
Stephan Kleuker

Erste Iteration: Klassen finden

e Aktivitatsdiagramme werden durch Anforderungen
konkretisiert

e Text der Anforderungen ist Grundlage zum Finden erster
Klassen

e |m Text werden Objekte identifiziert; sind Individuen, die durch
Eigenschaften (Exemplarvariablen) und angebotene
Funktionalitat charakterisiert werden

e grober Ansatz: Nomen in Anforderungen und Glossar ansehen;
konnen Objekte oder Eigenschaften sein

e Adjektive konnen auf Eigenschaften hindeuten

e [nformationen in Klassen gesammelt; Klassen beschreiben
Struktur, die jedes Objekt hat

e verwandter Begriff: Domain Model

0O0AD Prof. Dr. 175
Stephan Kleuker

Analyse der Anforderungen — Ausschnitt 1. Iteration

Al.1: In der Projektbearbeitung muss das System der nutzenden
Person die Mdglichkeit bieten, ein neues Projekt mit
Projektausgangsdaten anzulegen.

e Glossar Projektausgangsdaten: automatisch vergebene
eindeutige Projektnummer, Projektname, geplanter Start- und
Endtermin, geplanter Aufwand

e gefunden: Klasse Projekt mit Exemplarvariablen
Projektnummer, Projektname, geplanter Starttermin, geplanter
Endtermin, geplanter Aufwand

A1.2: Nach Abschluss der Eingabe (mit ,,Return“-Taste oder
Bestatigungsknopf) bei der Bearbeitung von Daten muss das
System neu eingegebene Daten in seine permanente
Datenhaltung Gbernehmen.

Al.3: In der Projektbearbeitung muss das System der nutzenden
Person die Maoglichkeit bieten, jedes Projekt auszuwahlen.

e gefunden: keine Klassen oder Exemplarvariablen

ondFunktionalitat spater) orof. Dr.. 176
Stephan Kleuker

UML-Notation

0..1

Projekt

-projektnummer: int
-projektname: String
-startGeplant: Datum
-endeGeplant: Datum
-aufwandGeplant: int
-startReal: Datum
-endeReal: Datum
-kommentar: String
-/fertigstellungsgrad: int
-faufwandReal: int

Ptz |

*

-teilprojekte

Projektaufgabe

1

-aufgaben *

-Vorgd

*

lenger

-aufgabenname: String
-arbeitsanteil: int
-startGeplant: Datum
-endeGeplant: Datum
-aufwandGeplant: int
-startReal: Datum
-endeReal: Datum
-aufwandReal: int
-fertigstellungsgrad: int

*

Mitarbeitend

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 10 SCIENCES

] -bearbeiternd

e /bedeutet abgeleitet, d. h. kann aus anderen Modelinformationen
berechnet werden (meist in Modellen weggelassen)

OOAD

Prof. Dr.

Stephan Kleuker

177

Zusammenhang Klasse und Objekt @ ... -

e Objekte lassen sich auch in der UML darstellen

e Kasten mit unterstrichenem ,,:<Klassenname>*“

e vor Doppelpunkt optional Objektname

e Objekte werden nicht im Klassendiagramm dargestellt (aber in
Sequenzdiagrammen, dann ohne Objektvariablen)

Projekt Perpetuum:Projekt
-projektnummer: int
-projektname: String projektnummer=42
-startGeplant: Datum projektname="Perpetuum"”
-endeGeplant: Datum startGeplant=24.10.2006
-aufwandGeplant: int endeGeplant=31.12.2007
-startReal: Datum aufwandGeplant=1000
-endeReal: Datum startReal=null
-kommentar: String endeReal=null
-ffertigstellungsgrad: int kammentar="in Planung"”
-faufwandReal: int

00AD Prof. Dr. 178
Stephan Kleuker

Tracing-Information (was wo) festhalten

HHHHHHHHHHHHHHHHHHH

Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.
Al.

OOAD

Ooo~NOTUVLTE, WDN PR

O
W N RO

!

Projekt

-projektnummer: int
 -projektname: String
-startGeplant: Datum

-endeGeplant: Datum
-aufwandGeplant: int
“-startReal: Datum
“-endeReal: Datum
>-kommentar: String
-ffertigstellungsgrad: int
-faufwandReal: int

Al.7

l

-aufgaben

>

*

e Zuordnung welche Anforderung wie (ganz, teilweise)

in welchen UML-Elementen umgesetzt

e (besserin einem Tool oder Text)

Prof. Dr.
Stephan Kleuker

179

- >

UML unterstutzt iteratives Vorgehen

e UML-Teile weggelassen bzw. ausblenden, abhangig von
notwendigen bzw. vorhandenen Teilinformationen

e Jeimplementierungsnaher desto detaillierter

Punkt Polygon Punkt
Punkt
Punkt =x:int Polygon bestont aush Punkt
% -y:int
y +Punkt(int, int) besteht ausk
+istNullpunkt():bool Polygon [— .| Punkt
Punkt +verschieben(int,int):void
-xint +nullAbstand():double besteht aushk
y:int Polygon] punkte * Punkt
Punkt
- Polygon] punkte * -~ Punkt
-x:int
-y:int -
+Punkt(x: int, y:int) Polygon < hite + -~ Punkt
+istNullpunkt():bool
+verschieben(xRichtung: int, yRichtung:int):void
+nullAbstand():double Polygon [nkte =~ Punkt
-- verwaltet Punkt in 2D-Ebene
-- bietet Maglichkeit Punkt zu verschieben Polygon {3}1 punkte * | Punkt
0O0AD Prof. Dr. 180

Stephan Kleuker

LZ. Iteration: Methoden suchen o e

5.3

e Methoden stehen fur Funktionalitat, die ein Objekt anbietet;
typisch: Zustand (d. h.) Exemplarvariable andern, Ergebnis
basierend auf Exemplarvariablen berechnen

e Ansatz 1: Analysiere Verben im Text

e Ansatz 2: Aus Use Cases lasst sich haufig eine Steuerungsklasse
(Koordinationsklasse) ableiten

e folgende Anforderungen an die Klassenformulierung mussen
beachtet werden:

— Klassen Gbernehmen jeweils eine Aufgabe und besitzen
genau die zur Durchfihrung benoétigten Methoden und die
fur die Methoden benotigten Exemplarvariablen

— Klassen sollen méglichst wenig andere Klassen kennen,
wodurch die Schnittstellenanzahl gering gehalten wird

e (Hinweis: unser Projektverwaltungsbeispiel ist datenlastig,
deshalb wenige Methoden)

0O0AD Prof. Dr. 181
Stephan Kleuker

Beispiel: zweite Analyse der Anforderungen

Al1.3: In der Projektbearbeitung muss das System die Moglichkeit bieten, jedes
Projekt auszuwahlen.

e Steuerungsklasse Projektverwaltung
e Exemplarvariablen: alle Projekte und selektiertes Projekt
e Projektauswahl ist set-Methode

Al.4: Nach der Projektauswahl muss das System der nutzenden Person die
Moglichkeit bieten, fur existierende Projekte neue Teilprojekte anzulegen.

e Wie bei Mengen von Werten liblich, wird meistens eine add- und eine delete-
Methode gefordert. In diesem Fall nur teilprojektHinzufuegen(Projekt): void

Al1.7: Nach der Projektauswahl muss das System der nutzenden Person die
Moglichkeit bieten, neue Projektaufgaben mit dem Aufgabennamen, dem
geplanten Start- und Endtermin, dem Arbeitsanteil der mitarbeitenden Person
und dem geplanten Aufwand zu definieren.

e Projekt hat Methode aufgabeHinzufuegen(Projektaufgabe): void
e Konstruktor Aufgabe(String, Datum, Datum, int, int)

0O0AD Prof. Dr. 182
Stephan Kleuker

Klassendiagramm

< >

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

Projektverwaltung

+inkonsistenteAktualisierungAnzeigen(String):void

0.1 1

« |-projekt
-selektiertesProjekt 0..1 : projekte

0.1

-haupt

Projekt

-projektnummer: int
-projektname: String
-startGeplant: Datum
-endeGeplant: Datum
-aufwandGeplant: int
-startReal: Datum
-endeReal: Datum
-kommentar: String
-/fertigstellungsgrad: int
-/aufwandReal: int

*

-teilprojekte

-aufgaben

Projektaufgabe

*

-selektierteAufgabe

+Projekt(String,Datum,Datum,int)
+eilprojektHinzufuegen(Projekt):void
+aufgabeHinzufuegen(Projektaufgabe):void
+fertigstellungsgradBerechnen(): double
+realenAufwandBerechnen(): int
+verteilterAufwand():int
+vorgaengerHinzufuegen(Projekt):void
+aufwandsaenderungPruefen(int): bool

+aufwandsaenderungPruefen(Projektaufgabe, int): bool

¥ 0..1

OOAD

-vorgaenger

Prof. Dr.
Stephan Kleuker

-aufgabenname: String
-arbeitsanteil: int
-startGeplant: Datum
-endeGeplant: Datum
-aufwandGeplant: int
-startReal: Datum
-endeReal: Datum
-aufwandReal: int
-fertigstellungsgrad: int

+Projektaufgabe(String,Datum,Datum,int,int)

*

1 -bearbeiternd
Mitarbeitend
183

Vererbung

e Analysemodell wird auf erste Optimierungen gepriuft

e Wenn Objekte verschiedener Klassen groRe Gemeinsamkeiten
haben, kann Vererbung genutzt werden

e Variante 1: Abstrakte Klasse mit moglichen Exemplarvariablen,
einigen implementierten und mindestens einer nicht-
implementierten Methode

e Variante 2: Interface ausschlieRlich mit abstrakten Methoden
(haben spater noch Bedeutung)

e Vererbung reduziert den Codierungsaufwand
e Vererbung erschwert Wiederverwendung
e Vererbung ist Hilfsmittel nicht Ziel der Objektorientierung

e Liskovsches Prinzip fur tberschreibende Methoden der
erbenden Klassen berlicksichtigen:

— Vorbedingung gleich oder abschwachen
— Nachbedingungen gleich oder verstarken

0O0AD Prof. Dr. 184
Stephan Kleuker

Beispiel: Vererbung

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 10 SCIENCES

Projektverwaltung

+inkonsistenteAktualisierungAnzeigen(String):void

0..1 1

« [-projekte

-selektiertegProjekt 0..1

Projekt

Projektkomponente

#name: String
#startGeplant: Datum
#endeGeplant: Datum
#aufwandGeplant: int
#startReal: Datum
#endeReal: Datum

i

-projektnummer: int
-kommentar: String
-/fertigstellungsgrad: int
-laufwandReal: int

0.1 -haupt

+Projekt(String,Datum,Datum,int)
+teilprojektHinzufuegen(Projekt):void
+aufgabeHinzufuegen(Projektaufgabe):void
+fertigstellungsgradBerechnen(): double
+realenAufwandBerechnen(): int
+verteilterAufwand():int
+vorgaengerHinzufuegen(Projekt):void
+aufwandsaenderungPruefen(int): bool
+aufwandsaenderungPruefen(Projektaufgabe, int): bool

* -teilprojekte

Projektaufgabe
-arbeitsanteil: int

nachster Schritt: Prifen, wo statt Projekt und Projektaufgabe
Projektkomponente stehen kann (Abstrahierung)

OOAD

1 -aufgaben * | -aufwandReal:int
-fertigstellungsgrad: int
0..1 +Projektaufgabe(String,Datum,Datum,int.int)
0..1 -selektieteAufgab
* 1 [-bearbeiternd
* _vorgaenger Mitarbeitend
Prof. Dr. 185

Stephan Kleuker

Klassen: von Analyse zum Design

e hier steht zunachst Analyseklassenmodell im Vordergrund, dass
meist nicht genauso implementiert wird

e Klassenmodell wird schrittweise in Richtung ,,sinnvoll
programmierbar” umgebaut
IH

e in,sinnvoll” gehen Erfahrungen und Randbedingungen ein (z.
B. Web-Applikation)

e Erfahrungen zum guten Design werden u. a. mit Design-Pattern
dokumentiert (wichtig, aber spater)

e mit Design-Erfahrungen wird erstes Klassenmodell bei
Erstellung besser (gibt dann nur ein zentrales Klassenmodell)

0O0AD Prof. Dr. 186
Stephan Kleuker

LVaIidierung mit Sequenzdiagrammen
5.4

e Sequenzdiagramme beschreiben, wie Objekte bei anderen
Objekten Methoden aufrufen

e Mit Hilfe des erreichten Modells kann man mit
Sequenzdiagrammen validieren, ob die im Aktivitatsdiagramm
beschriebenen Ablaufe moglich sind

e Sequenzdiagramme in der klassischen Form beschreiben damit
Beispielablaufe

00AD Prof. Dr. 187
Stephan Kleuker

Darstellungsvarianten in Sequenzdiagrammen

HHHHHHHHHHHHHHHHHHH

OOAD

rechte Seite zeigt

verschiedene

objekt1: Klasse1

objekt?: Klasse?

Darstellungsmoglichkeiten

eines Methodenaufrufs
Rickgabewerte werden
weggelassen, wenn nur
Ablauf wichtig
Aktivitatsbalken (optional)
verdeutlicht, dass Objekt
aktiv ist (rechnet, wartet)
visualisiert in Klasse 1 die
Zeile

y = objekt2.methodex(45,x);
letzte Variante meist am
intuitivsten (in VL genutzt
ohne Aktivitatsbalken)

Prof.

methodex(45,x) |

L

methodex(45.x) o |

|

| |
y=methodex(45,x) > I

|

| |
methodex(45 x) > |

S |

Dr.

188

Stephan Kleuker

Iterative Entwicklung und Validierung

Video
Beispielablauf
e Ableitung von Methodennamen

e Zeichnen eines kleinen Sequenzdiagramms mit dieser
Methode; feststellen, ob weitere Methoden benoétigt

e Erganzung von Methodenparametern

e Erganzung des Sequenzdiagramms um Parameter; feststellen,
ob weitere Methoden bendtigt

e Falls kein Sequenzdiagramm herleitbar, auf Ursachenforschung
gehen (Modellfehler?)

e Optimales Ziel: Mdgliche Durchlaufe durch
Aktivitatsdiagramme werden abgedeckt

00AD Prof. Dr. 189
Stephan Kleuker

https://youtu.be/ZyjGtpJsdV4

Zusammenhang zwischen Aktivitats- und
Sequenzdiagrammen

- >

far jeden moglichen
Durchlauf durch das
Aktivitatsdiagramm
wird ein
Sequenzdiagramm,
evtl. zusammengesetzt,
erstellt

0O0AD Prof. Dr.
Stephan Kleuker

T L
P —>
1 I 1
| |
| |
| |
1 1 1 1 1
s
| |
s
1 | I | 1
1 ! ! ! 1
r __________ -
| |
| |
1 1
| I I I :
I I
B
I)
I : | 1 I
L I
190

HOCHSCHULE OSNAB

RUCK

Iterative Entwicklung eines Sequenzdiagramms

HHHHHHHHHHHHHHHHHHH

generell: zunachst unterspezifiziert,

: A b:B |:Set
dann Parameter verfeinern tues()
>
abstrakter Ablauf (x) oder konkreter
S _ tues(x)
Beispielablauf (mit Werten) >
tues(42)>
Erganzung interner Berechnungen, z.
B.inA z = this.oh();
::I z=o0h()
interne Collections meist nicht
dargestellt hinzu(c)»
Darstellung aber moglich, in B:
public void hinzu(C c){ hinzu(c) add (c)
l.add(c); >
<
} <
0O0AD Prof. Dr. 191

Stephan Kleuker

Highlevel-Sequenzdiagramme (nur Ausblick)

- >

HOCHSCHULE OSNABRUCK

Objekt erzeugen Bl

ob1:Klasse1 ob1:Klassel ob2:Klasse1
| | |
creat ob2:Klasse1 delet
— | | =< [Objekt loeschen F‘_\‘
| |
ob1:Klasse1 ob2:Klasse1
| | ob1:Klassel ob2:Klasse1
| |
ot |) | I I
- | | alt | |
[I=0] machz() > | |
| | =01 mach1() !
|
: : > = i
ob1 Hllassﬂ ob2 Hllassﬂ [i=0 &}l: 0] mach2() |
| | I J|_ __________ [o
: [else]
Imp{star{tw&rt,endwert,bedmgulhgy : mach3() hl
! mach2() hl E E
| |
I I
Prof. Dr. 192

OOAD

Stephan Kleuker

Beispiel: Fertigstellungsgrad berechnen e
:Projektverwaltung -Projekt :Projekt :Projektaufgabe

l
fertigstellungsgradBerechnen()>|
|

: |
| |
I |
| | '
| loop (frlalle Teilprojektey |
| " |
I

I

fertigSteIIungsgradBere%hen()

|
loop (firlalle Projektaufgaber?)

I

I

|

, l

| getFertigstellungsgrad() >:

/N
|

|

|

|

|
|2
|3
3
o
|

|

|

|

|

|

i %

P T— L I—— o
| |
0O0AD Prof. Dr. 193

Stephan Kleuker

Beispiel: Prifung Aufwandsanderung Projektaufgabe...........

-Projektverwaltung -Projekt aufg:Projektaufgabe

l
aufwandsaenderungPruefen(aw,neuerWert) |

! pIan=getAufwandGepIant()>:

l vertéilt=verteilterAufwand()

|
|
|
|
|
|
I
|
|
ri_.-
|
|

ﬁ: -

[aufwandGep’ant—verteilt>=neuerWert-pIan]

alt <V i

OOAD

L 4! -
_______ Neprasumin cms s e S |
[else] ' :
false l |
------- | |
Prof. Dr.

Stephan Kleuker

194

Sequenzdiagramm — Detailgrad (1/3)

< »

HOCHSCHULE OSNABRUCK

e man kann alle Objekte einzeichnen oder unwichtige weglassen

extern

:Studierendenverwaltung

|
|
I
I
I
l

neuStudierend(42."Ute")>:
|

l< _____

extern

new r s:Studierend

| Studierend(42,"Ute"

— — — — — — —

OOAD

neuStudierend(42."Ute")NI
|

' Studierend(42,"Ute")

Prof. Dr.
Stephan Kleuker

o i S J
|
! put(42.s) l
| I
s s v s T [ENOE |
| | |
________ l I |
| | |
Studierendenverwaltung
new > Studierend

195

Sequenzdiagramm — Detailgrad (2/3) o e

e man kann alle Objekte einzeichnen oder unwichtige weglassen

extern Studierendenverwaltung | [studierende:Map<|l ong.String>

gibStudierend(42) >

l
|
|
| |
| |
| tud S D 1
_____ stud_ _ _ _ _ | '
< . |
extern Studierendenverwaltung
I
| gibStudierend(42) P:
| g '
stu I
e i
| \
00AD Prof. Dr. 196

Stephan Kleuker

Sequenzdiagramm — Detailgrad (3/3)

e theoretisch: kann man Methoden detailliert zeigen

< »

HOCHSCHULE OSNABRUCK

exlom Studierendenverwaltung studierende:l jst<Student> s:Studierend

| I | l
| | | |
| i ; I | l
| gibStudierend(42) > | '
l | | |
: loop i:=0..studierehde.size(y : :
| l | l
| : B > |
| e i |
l | l
| ' qetl\fatnr() >

| ¢al |
l R e S S R | S S |
| i | l
l opt val==42) | l
| | | |
| l | |
K== = ——— o | |
| | | l
| I | l
l l | |
| I | |
| | | |
K————— null_ _ _ _ _ — | |
| l | |
| | | |

0O0AD Prof. Dr. 197

Stephan Kleuker

Sequenzdiagramm und Kommunikationsdiagramm

a:K1 b:K2 c:K3 a:K1

1)

HHHHHHHHHHHHHHHHHHH

|
I
‘‘‘‘‘ 7 | 2:y=
: m2(x) N. () N| o
e
l I __’
l m3(y) >E n20 | b:K2 2.1: y=n1()

c:K3

[|
S N e P 31150

e gleiches Ausdrucksvermogen wie einfache Sequenzdiagramme

e Zusammenspiel der Objekte wird deutlicher
e interne Berechnung 2.1, 2.2 (ggfls. 2.1.1, 2.1.1.1)

0O0AD Prof. Dr.
Stephan Kleuker

198

GUI-Modellierung e

cc Video

e fachlich hangt Oberflache (GUI, Graphical User Interface) eng
mit unterliegendem Geschaftsklassenmodell (bisher behandelt)
zusammen

e moglicher Ansatz: ,Mache alle Modellanteile an der Oberflache
sichtbar, die eine nutzende Person andern oder flir dessen
Inhalte er sich interessieren kann.”

e Variante: mache ersten GUI-Prototyp und halte bei Ein- und
Ausgaben fest, welche Modellinformationen sichtbar sein
sollen

e GUI-Prototyp gut mit auftraggebenden Personen diskutierbar
e Hinweis: Thema Softwareergonomie

00AD Prof. Dr. 199
Stephan Kleuker

https://youtu.be/FQizDJqX69A

Erweiterung mit Boundary-Klassen

< »

GUISteuerung

+neues Projekt erstellen
+Projektdaten bearbeiten
+Projektverwaltung aufrufen

steuert

Projektmaske

steuert

0..1
Projektverwaltungsmaske

+Projekt auswahlen
+Teilprojekt hinzufligen
+Teilprojekt IGschen

steuert

/0.1

=> +Projektdaten eingeben
+Projektdaten anzeigen
+Projektdaten &ndern

0.1

steuert
0.1

Projekt

-projektnummer: int
-kommentar; String
-ffertigstellungsgrad: int
-/aufwandReal: int

Projektverwaltung

+inkonsistenteAktualisierungAnzeigen(String):void

+Projekt(String, Datum,Datum,int)
+teilprojektHinzufuegen(Projekt):void
+aufgabeHinzufuegen(Projektaufgabe):void
+fertigstellungsgradBerechnen(): double
+realenAufwandBerechnen(): int
+verteilterAufwand():int
+vorgaengerHinzufuegen(Projekt):void
+aufwandsaenderungPruefen(int): bool

+gibProjekt(int):Projekt +aufwandsaenderungPruefen(Projektaufgabe, int): bool
0O0AD Prof. Dr. 200
Stephan Kleuker

HOCHSCHULE OSNABRUCK

° ° ° - >
Sequenzdiagramm mit Nutzungsdialog
:GUISteuerung ‘Projektverwaltung
Nu%mm T |
i : il |
neues Projekt
erstellen g o e} :
new Projektmaske 3 |
2 <__________!Ehm&mnm |
Projektdaten P :
eingeben o | P prProjekt
————————————— _f — — —

projektHinzufuegen(pr) | :

_____________ |

— B < ™] |

: | |

Pro;e:lt}rerwaltunq | new Projektverwal- >< ' '

ufen I I

tungsmaske() :Projekiverwaltungs | |

e s s maske ' '

Projekl auswahlen e : :

> I |

gibProjekt(...) | :

S rialioas s v s s et o] s s] € O e tl:l I

v .: |

Teilgrojekt zuordnen > gibProjekt(...) | :

et s |3 P RS, T‘:’] |

teilprojektHinzufuegenitp) |

- 4=]

e e e |

T T X | |

0O0AD Prof. Dr. 201

Stephan Kleuker

Anforderungsverfolgung

Typische Fragen:
e Werden alle Anforderungen umgesetzt?
e Wo werden Anforderungen umgesetzt?

e Gibt es Spezifikationsanteile, die nicht aus Anforderungen
abgeleitet sind?

e Woher kommt eine Klasse, eine Methode, ein Parameter?

e Was passiert, wenn ich eine Anforderung oder eine Klasse
andere?

e Generell werden die Fragen wesentlich komplexer zu
beantworten, wenn Software spater umgebaut oder erweitert
wird

00AD Prof. Dr. 202
Stephan Kleuker

Anforderungsverfolgung - Beispielzusammenhange

Aldionen

.

Anforderungen E]

OOAD

Prof. Dr.
Stephan Kleuker

Anf1:Mach .|
ANf2: Nach .0
Anf3: Mach ..[F~-~
Anfd: Nach ...
-
Fa

‘..-"'

AnfS: MNach .. .-~

- >

HOCHSCHULE OSNABRUCK

Klassenmadellierung %

Klasseh

-id; int

+machw as(delta int)

klasseB

-wert int
-name: string

+zeige()

203

HHHHHHHHHHHHHHHHHHH

Video

6. Vom Klassendiagramm zum
Programm

I 6.1 CASE-Werkzeuge

M 6.2 Ubersetzung einzelner Klassen

M 6.3 Ubersetzung von Assoziationen

I 6.4 Spezielle Arten der Objektzugehorigkeit

] 6.5 Aufbau einer Software-Architektur

] 6.6 Weitere Schritte zum lauffahigen Programm

0O0AD Prof. Dr. 204
Stephan Kleuker

https://youtu.be/MAKu2cshkoo

Analyse des Ist-Standes

e bekannter Weg: Wiinsche des auftraggebenden
Unternehmens, Anforderungsformulierung, Analyse-Modell

e Analysemodell kann realisiert werden, aber:

— Klassen kaum fur Wiederverwendung geeignet

— Programme meist nur aufwandig erweiterbar

— viele unterschiedliche Losungen zu gleichartigen Problemen
e deshalb: fortgeschrittene Designtechniken studieren

e aber: um fortgeschrittenes Design zu verstehen, muss man die
Umsetzung von Klassendiagrammen in Programme kennen
(dieses Kapitel)

e aber: um fortgeschrittenes Design zu verstehen, muss man
einige OO-Programme geschrieben haben

00AD Prof. Dr. 205
Stephan Kleuker

LUML-TooIsuiten / CASE-Werkzeuge s

6.1

Theorie:

e UML-Werkzeuge unterstutzen die automatische Umsetzung von
Klassendiagrammen in Programmgeruste (Skelette)

e entwickelnde Personen missen die Geruste mit Code fillen

e viele Werkzeuge unterstitzen Roundtrip-Engineering, d.h.
Anderungen im Code werden auch zuriick in das Designmodell
ubernommen (wenn man Randbedingungen beachtet)

e Roundtrip beinhaltet auch Reverse-Engineering

Praxis:

e sehr gute kommerzielle Werkzeuge; allerdings muss man fir
Effizienz Suite von Werkzeugen nutzen; d. h. auf deren
Entwicklungsweg einlassen

e ordentliche nicht kommerzielle Ansatze fur Teilgebiete; allerdings
Verknupfung von Werkzeugen wird aufwandig

0O0AD Prof. Dr. 206
Stephan Kleuker

LUbersetzung einfacher Diagramme (1/4)

HOCHSCHULE OSNABRUCK

6.2
Mitarbeitend
- minr:int
- ratarEal iradkiar]

- nachname:String
- vorname:String

+ getMinr():int

+ getNachname():String

+ getVomame():String

+ setMinr(in minr:int):void

+ setMitarbeitendzaehler(in mitameitendzaehler-intyvoid
+ setNachname(in nachname:String):void

+ setVorname(in vomame: String):void

0O0AD Prof. Dr.
Stephan Kleuker

Anmerkung: auch
bei Realisierung
kann vereinbart
werden, dass get-
und set-Methoden
in Ubersichten
weggelassen (und
damit als gegeben
angenommen)
werden

Klassenmethoden
sind unterstrichen

207

Ubersetzung einfacher Diagramme (2/4)

public class Mitarbeitend {

/**

* @uml.property name="minr"
*/

private int minr;

/**

* Getter of the property <tt>minr</tt>
* @return Returns the minr.
* @uml.property name="minr"
*/

public int getMinr() {

return minr;
}

/**
* Setter of the property <tt>minr</tt>
* @param minr The minr to set.
* @uml.property name="minr"
*/
public void setMinr(int minr) {
this.minr = minr;

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

208

Ubersetzung einfacher Diagramme (3/4)

private String vorname = "";
public String getVorname() {
return vorname;

}

public void setVorname(String vorname) {
this.vorname = vorname;

}

private String nachname = "";
public String getNachname() {
return nachname;

}

public void setNachname(String nachname) {
this.nachname = nachname;

0O0AD Prof. Dr. 209
Stephan Kleuker

Ubersetzung einfacher Diagramme (4/4)

———————————————

= mitarbeitendzaehler;

————————

OO0AD Prof. Dr. 210
Stephan Kleuker

Notwendige Code-Erganzung durch Entwicklung ... -

Mitarbeitend

+ Mitarbeitend(in vorname:String, in nachname:String)
+ toString():String

public Mitarbeitend(String vorname, String nachname){
this.vorname = vorname;
thlS nachname = nachname,

@Override
public String toString() {

—————————————————————————

0O0AD Prof. Dr. 211
Stephan Kleuker

LUmgang mit Assoziationen im Design

6.3 Video

e Assoziationen zunachst nur Strich mit Namen (und
Multiplizitaten)

e flUr Implementierung jede Assoziation konkretisieren (Richtung
der Navigierbarkeit, Multiplizitaten sind Pflicht)

HHHHHHHHHHHHHHHHHHH

Projektaufgabe |—>¢—Dearbeitet von Mitarbeitend
-bearbeitend O..

public class Projektaufgabe {
/** werkzeugspezifische Kommentare weggelassen
*/
private Mitarbeitend bearbeitend;
public Mitarbeitend getBearbeitend() {
return this.bearbeitend;
}

public void setBearbeitend(Mitarbeitend bearbeitend) {
this.bearbeitend = bearbeitend;

0 D} Prof. Dr. 212
Oﬁ Stephan Kleuker

https://youtu.be/xqs52kw87Cc

Multiplizitat2. -

e Objekreferenz darf nie null sein

Projektaufgabe |—>¢ beafbf‘éz‘a‘:g;‘nend >{Mitarbeitend

private Mitarbeitend bearbeitend = new Mitarbeitend();

e oder im Konstruktor setzen

e man sieht, default-Konstruktoren sind auch hier hilfreich;
deshalb, wenn irgendwie moglich definieren

e Gleiche Problematik mit der Werte-Existenz, bei Multiplizitat
1..n

00AD Prof. Dr. 213
Stephan Kleuker

Multiplizitatn(1/2) »

e Umsetzung als Collection (Sammlung, Container)

: bearbeitet von : :
Projektaufgabe Mitarbeitend
) g < -bearbeitend >

e Umsetzung hangt von Art der Collection ab
— sollen Daten geordnet sein
— sind doppelte erlaubt
— gibt es spezielle Zuordnung key -> value
e entwickelnde Person muss zur Typwahl spatere Nutzung kennen

e eine Umsetzung fir 1..*

import java.util.List;

import java.util.ArraylList;

public class Projektaufgabe {

private List<Mitarbeitend> bearbeitend = new ArrayList<>();
e bitte, bitte in Java nicht alles mit ArrayList realisieren (!!!)

e Multiplizitat 0..7 als Array umsetzbar

0O0AD Prof. Dr. 214
Stephan Kleuker

Multiplizitdt n (2/2)

e Zum Codefragment der letzten Zeile passt besser folgendes

Klassendiagramm

S

L it &3

List T

JaY

<<bind>> {'I;->Mitarbeitend}

-bearbeitende

. N
Projektaufgabe[7< 1

e Hinweis: Standardhilfsklassen z. B. aus der Java-

List

~

*

Mitarbeitend

HHHHHHHHHHHHHHHHHHH

Klassenbibliothek oder der C++-STL werden typischerweise in

Klassendiagrammen nicht aufgefihrt

e Anmerkung: man sieht die UML-Notation fiir generische (oder

parametrisierte) Klassen

e UML-Werkzeuge unterscheiden sich bei der Generierung und
beim Reverse-Engineering beim Umgang mit Collections
00AD Prof. Dr.

Stephan Kleuker

215

Collectionsinumr.. -

-bearbeiter
{unique} *

Projektaufgabe >| Mitarbeitend

e Constraints (Randbedingungen) stehen in geschweiften
Klammern (weitere Moglichkeiten -> Object Constraint
Language, OCL)

e unique: eindeutig, nur einmal

e ordered: geordnet, sortiert oder Reihenfolge beibehaltend
e unique: Set

e ordered: List

e notunique, unordered: MultiSet

e Default ohne Angabe ist: {unique, unordered}

00AD Prof. Dr. 216
Stephan Kleuker

Collections in der Programmierung

e Jede OO-Programmiersprache hat groRe Sammlung an
Umsetzungen von Collections

e UML lasst meist trotz Constraints verschiedene Umsetzungen
ZU

e Java: Beispielumsetzungen fur Set
— HashSet: generell recht schnelles Einfligen und L6schen

— TreeSet: garantiert log(n) fir Basisfunktionalitat, nutzt
Ordnung der Elemente (Interface Comparable<>)

— LinkedSet: behalt beim Iterieren die Reihenfolge der
Eintragungen ein (ordered)

— org.apache.commons.collections.list.SetUniquelist: Liste
mit eindeutigen (unique) Eintragen

00AD Prof. Dr. 217
Stephan Kleuker

Qualifizierte Assoziationen

e qualifizierendes Attribut als Teil der Assoziation angegeben

Vorlesung _studierende Studierend
-modulid:int * >'-matnr:int
-name:String
Vorlesung _studierende Studierend
-modulid:int [matnr 1 ~]-matnr:int
-name:String

e steht typischerweise fir Map (Dictionary)
private Map<Integer,Studierend> studierende

e zu jeder der Vorlesung bekannten Matrikelnummer gehort

genau ein Studierend-Objekt

e andere Multiplizitaten (0..1, *) moglich

OOAD

Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

218

6.4

Arten der Zugehorigkeit (Aggregation 1/2)

HHHHHHHHHHHHHHHHHHH

e nicht exklusiver Teil eines Objekts (Mitarbeitend-Objekt kann bei

mehreren Projektaufgaben bearbeitende Person sein)

Projektaufgabe (<> bear.:i:::);’gznd - Mitarbeitend

in C++: Mitarbeitend *bearbeitend;
Mitarbeitend* Projektaufgabe::getBearbeitend(){
return bearbeitend;}

oder Mitarbeitend bearbeitend;

Mitarbeitend& Projektaufgabe::getBearbeitend(){
return bearbeitend;}

Realisierungsproblem: Projektaufgabe kann Namen der
bearbeitenden Person andern
bearbeitend->setNachname("Meier");
e Kann als VerstoR gegen Kapselung (Geheimnisprinzip)
angesehen werden

e Designansatz: Klasse erhalt Interface, die Methoden enthalt, die

bestimmte andere Klassen nutzen konnen
0O0AD PPO'F. Dr.

Stephan Kleuker

219

Arten der Zugehorigkeit (

< »

Aggregation 2/2)

e Designansatz: Verhindern unerwiinschten Zugriffs durch
Interface (generell gute Idee !)

Projektaufgabe

0

0.1
-bearbeitend

<<interface>>
Aufgabenbearbeitend
+ getMinr():int
+ getNachname():String
+ getVomame():String

Mitarbeitend

- minr:int

) ioaakiars
- nachname:String

- vorname String

+ Mitarbeitend()

+ Mitarbeitend (in vorname:String, in nachname:String)
+ getMinr():int

+ getMitarbeitendzaehler():

+ getNachname():String

+ getVomame():String

+ setMinr(in minr:int):void

+ setMitarbeitendzashler(in mitarheitendzashler:intyvoid
+ setNachname(in nachname:String):void

+ setVorname(in vomame: Sfring):void

+ toString():String

Ku rzdarstellu.nfg) Em——m—
Interfacerealisierer: Aufgabenbearbeitend
00AD Prof. Dr. 220

Ste

phan Kleuker

HOCHSCHULE OSNABRUCK
IVERSITY ENCES

Arten der Zugehorigkeit (Komposition 1/2)

e Konkretisierung der Zugehorigkeit: existenzabhangiges Teil,

HHHHHHHHHHHHHHHHHHH

Exemplarvariable gehort ausschlielSlich zum Objekt (Mitarbeitend-
Objekt kann [unrealistisch] nur exakt eine Projektaufgabe
bearbeiten; niemand anderes nutzt dieses Objekt)

Projektaufgabe | bearbeitet von

-bearbeitend O..

Mitarbeitend

e Realisierung in C++
Mitarbeitend bearbeitend;

Mitarbeitend Projektaufgabe: :getBearbeitend (){

return bearbeitend;

}

e Bei Ruckgabe wird Kopie des Objekts erstellt und zurtickgegeben

0O0AD Prof. Dr.
Stephan Kleuker

221

Arten der Zugehorigkeit (Komposition 2/2)

e Java arbeitet nur mit Referenzen (unschone Ausnahme sind

Elementartypen), wie realisiert man

bearbeitet - bearbeiter
Projektaufgabe |@

HHHHHHHHHHHHHHHHHHH

0..1
@Override // in Mitarbeitend.java

public Mitarbeitend clone(){ // echte Kopie
Mitarbeitend ergebnis = new Mitarbeitend();

ergebnis.minr = minr;

ergebnis.nachname = nachname; //Strings sind
ergebnis.vorname = vorname; //Konstanten

) return ergebnis;

// in Projektaufgabe

public Mitarbeitend getBearbeitend() ({
return this.bearbeitend.clone();

e Variante: bei Realisierung tberall doll aufpassen

0O0AD Prof. Dr.
Stephan Kleuker

> Mitarbeiter

222

Kurzzeitige Klassennutzungen

e Klassen nutzen andere Klassen nicht nur fir Exemplar- (und
Klassen-) Variablen

e Klassen erzeugen Objekte anderer Klassen lokal in Methoden, um
diese weiter zu reichen
public class Projektverwaltung {
private Projekt selektiertesProjekt;
public void projektaufgabeErgaenzen(String name){
Projektaufgabe pa = new Projektaufgabe(name);
selektiertesProjekt.aufgabeHinzufuegen(pa);

}

e Klassen nutzen Klassenmethoden anderer Klassen
e |nder UML gibt es hierfur den ,,Nutzt“-Pfeil

Projektverwaltung| «uses» = Projektautgabe

e Wenn zu viele Pfeile im Diagramm, dann mehrere Diagramme mit
gleichen Klassen zu unterschiedlichen Themen

e UML-Werkzeuge unterstiitzen Analyse von Abhangigkeiten

0O0AD Prof. Dr. 223
Stephan Kleuker

LErsteIIen einer Softwarearchitektur

6.5
e Ziel des Design ist ein Modell, welches das Analysemodell

vollstandig unter Berlicksichtigung
implementierungsspezifischer Randbedingungen umsetzt

e allgemeine Randbedingungen: Es gibt ingenieurmallige
Erfahrungen zum gutem Aufbau eines Klassensystems; dieses
wird auch SW-Architektur genannt

e Ziele fur die Architektur
— Performance
— Wartbarkeit
— Erweiterbarkeit
— Verstandlichkeit
— schnell realisierbar
— Minimierung von Risiken

0O0AD Prof. Dr. 224
Stephan Kleuker

Systematische Entwicklung komplexer Systeme ...

e Fur grolRe Systeme entstehen viele Klassen; bei guten Entwurf:

e Klassen die eng zusammenhangen (gemeinsame
Aufgabengebiete)

e Klassen, die nicht oder nur schwach zusammenhangen
(Verkntpfung von Aufgabengebieten)

e Strukturierung durch SW-Pakete; Pakete konnen wieder Pakete
enthalten

javax.swing

javax.swing.text

javax.swing.text.html

javax.swing.text.rtf

javax.swing.text.html.parser

Prof. Dr. 225

OOAD
Stephan Kleuker

Typische 3-Schichten-SW-Architektur

Ziel: Klassen eines oberen Pakets greifen
nur auf Klassen eines unteren Paketes zu
(UML-“nutzt“-Pfeil)

Anderungen der oberen Schicht
beeinflussen untere Schichten nicht

Analysemodell liefert typischerweise nur
Fachklassen

Datenhaltung steht flir Persistenz

typisch Varianten von 2 bis 5 Schichten
Klassen in Schicht sollten gleichen
Abstraktionsgrad haben

Schicht in englisch ,tier”

obere und untere Schichten konnen stark
von speziellen Anforderungen abhangen
(spater)

0O0AD Prof. Dr.
Stephan Kleuker

Oberflache

HHHHHHHHHHHHHHHHHHH

£

L/

Fachklassen

)

L

Datenhaltung

226

Beispiel: grobe Paketierung (eine Variante)

< »

HOCHSCHULE OSNABRUCK
NIVERSITY ENCES

GUI
Projektuebersichtsmaske T GUISteuerung = Mitarbeitenduebersichtsmaske
Projektmaske
o) 9 Sk IMitarbeitendmaskel
Projektaufgabenmaske
Projekte Projektmitarbeit ¥ I

Projektverwaltung
|

Vo

Projekt

/\\
y 2

—

Mitarbeitendverwaltung

—|Mitarbeitend

4
Faehigkeit

Projektaufgabe

VA

Projektkomponente

Hinweis: nicht Java-spezifischl\—\]

e Anmerkung: Datenverwaltung noch nicht konzipiert

OOAD

Prof. Dr.

Stephan Kleuker

227

Beispiel: grobe Paketierung (zweite Variante)

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY Of IED SCIENCES

GUI

Projektuebersichtsmaske

AbstrakteMaske g
Projektmaske /v N

Mitarbeitenduebersichtsmaske

Mitarbeitendmaske

GUISteuerung

Projektaufgabenmaske / \

Projekte /

4

Projektverwaltungsinterface

Projektmitarbeit

\,

ZP / 7 Mitarbeitendverwaltungsinterfacel

Projektverwaltung) \ Mitarbeitendl

T : Mitarbeitendverwaltung /
Projekt /
Faehigkeit

AV \

Projektkom te < Projektaufgabe

S PR ARENER Hinweis: nur Vision [%

Prof. Dr. 228

OOAD

Stephan Kleuker

Forderung: azyklische Abhangigkeitsstruktur

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 0 SCIENCES

GUI
GUISteuerung
ProjektGUI = e MitarbeitendGUI
Vit =
\X ;
Fachklassen % :
\
Projekte \\ Projektmitarbeit !
\ |
Projektsteuerung {l Mitarbeitendsteuerung [\/
L >
| |
| |
Projektdaten A4 Mitarbeitenddaten | \V/

OOAD

Prof. Dr.
Stephan Kleuker

229

Umsetzung von Paketen inJavaund C++ = ... o

package fachklassen.projektdaten;
import fachklassen.projektmitarbeit.Mitarbeitend;
public class Projektaufgabe {
private Mitarbeitend bearbeitend;
/* oo ¥/ BB src
} . @8 fachKassen.projekte
: EE fachklassen.projektmitarbeit

#include "Mitarbeitend.h" //evtl. mit Dateibaum
using namespace Fachklassen: :Projektmitarbeit;
namespace Fachklassen{
namespace Projektdaten{
class Projektaufgabe{
private:
Mitarbeitend *bearbeitend; // ...

}s

0O0AD Prof. Dr. 230
Stephan Kleuker

Paketnamen und Strukturierungsmoglichkeiten

e gibtin Programmiersprachen Regeln fur Paketnamen
e Beispiel: Firma mit Webseite meineFirma.de
e Paketnamen beginnen immer mit de.meineFirma

e Pakete orientieren sich an Architekturstilen
e Beispiel: Boundary — Control — Entity
e man kann Pakete z. B. auch nach Use Cases ordnen

e |nterfaces konnen in anderen Paketen getrennt von
Implementierung stehen

e ein oder mehrere Pakete werden in Java als jar-Datei
ausgeliefert

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

231

Paketabhangigkeiten optimieren

e Zielist es, dass Klassen sehr eng zusammenhangen; es weniger
Klassen gibt, die eng zusammenhangen und viele Klassen und
Pakete, die nur lose gekoppelt sind

e Moglichst bidirektionale oder zyklische Abhangigkeiten
vermeiden

e Bei Paketen kdnnen Zyklen teilweise durch die Verschiebung
von Klassen aufgelost werden

e Wenig globale Pakete (sinnvoll fur projektspezifische Typen (z.
B. Enumerations), Konstanten, Utility-Klassen und Ausnahmen)

e Esgibt viele Designansatze, Abhangigkeiten zu verringern bzw.
ihre Richtung zu andern

0O0AD Prof. Dr. 232
Stephan Kleuker

Trick: Abhangigkeit umdrehen

HHHHHHHHHHHHHHHHHHH

Video
bidirektionale Abhangigkeit IB1 ist Schnittstelle von B1
2wischen A1 und B1 (alle Methoden)
A B
R A B
A1 B1
= » ¢interface» {]___;; B1
L7 IB1
< W /? / df
B2
B2
Al |
gl

e generell kdbnnen Interfaces haufiger in anderen Paketen liegen,
als ihre implementieren Klassen

e Java-Klassenbibliothek Swing fordert haufig die Interface-
Implementierung bei der Ereignisbehandlung

0O0AD Prof. Dr. 233
Stephan Kleuker

https://youtu.be/oM-jFKsQmZk

Architektursichten

6.6

e Paket- und Klassendiagramme geben einen guten Uberblick
Uber die Ergebnisse des statischen SW-Entwurfs

e Es gibt aber mehr Sichten (Betrachtungsweisen), die fir eine
vollstandige SW-Architektur relevant sind

e 7.B.wurde die HW des zu entwickelnden Systems noch nicht
berlcksichtigt

e Diese Sichten mussen zu einem System fuhren; deshalb mussen
sich Sichten Uberlappen

e 2. B. eigenes Diagramm mit Ubersicht Uiber eingesetzte
Hardware und Vernetzung; dazu Information, welche SW wo
laufen soll

00AD Prof. Dr. 234
Stephan Kleuker

4+1 Sichten

Logische Sicht Implementierungs-

- funktionale Ana- sicht
lyseergebnisse - Subsysteme

- Klassenmodell //\\Schnittstellen

(Szenarien)

Ablaufsicht ~ ~.____“Physische Sicht
- Prozesse - Zielhardware

- Nebenlaufigkeit - Netzwerke

- Synchronisation

0O0AD Prof. Dr. 235
Stephan Kleuker

4+1 Sichten mit (Teilen der) UML

HHHHHHHHHHHHHHHHHHH

Logische Sicht Implementierungs-
- Klassendiagramme sicht
- Paketdiagramme
- Komponenten-
- N diagramme

Szenarien
(-Use Case-Diagramme >

Ablaufsicht - Aktivitatsdiagramme

- Sequenzdiagra$‘ 4/. .

- Kommunikations- Physische Sicht
diagramme - Deployment-

- Zustandsdiagramme diagramme

0O0AD Prof. Dr.
Stephan Kleuker

236

Ablaufsicht

e wichtig fir verteilte Systeme; bzw. Systeme, die verteilt (auch
auf einem Rechner) laufen

e Festlegen der Prozesse
e Festlegen etwaiger Threads

e so genannte aktive Klassen; werden Objekte dieser Klassen
gestartet, so starten sie als eigenstandige Prozesse/Threads

aktivesObijekt:
AktiveKlasse

AktiveKlasse

e Prozessverhalten u. a. durch Sequenzdiagramme beschreibbar
e (spater etwas mehr; gibt eigenes Modul dazu)

00AD Prof. Dr. 237
Stephan Kleuker

Implementierungssicht

e Das Designmodell muss physikalisch realisiert werden; es muss
eine (ausfuhrbare) Datei entstehen

e Pakete fassen als Komponenten realisiert Klassen zusammen

e haufig werden weitere Dateien benotigt: Bilder, Skripte zur
Anbindung weiterer Software, Installationsdateien

e Komponenten sind austauschbare Bausteine eines Systems mit
Schnittstellen fiir andere Komponenten

e Typisch ist, dass eine Komponente die Ubersetzung einer Datei
ist

e Typisch ist, dass eine Komponente die Ubersetzung eines
Pakets ist; in Java .jar-Datei

00AD Prof. Dr. 238
Stephan Kleuker

< »

Komponentendiagramm

O— E <<component>>

Gesamtprojekte —< Projekte

Projekte o <<provided Interfaces>>
O— Mitarbeitszuordnung Gesamtprojekte
Einzelprojekt Einzelpojekt
)))) <<required interfaces>>
Bilder zeigen zwei alternative Darstellungen Mitarbeitszuordnung
Komponenten bieten <;fe?'i(2taﬁ0">;

. . . . rojeKtverwaliun
Schnittstellen(realisierungen) (Kreis) und pm}ekt -
bendtigen Schnittstellen(realisierungen) Projektaufgabe
(Halbkreis) Projektkomponente

. N]] Einzelprojekt
Komponenten kénnen lber Schnittstellen in Gesamtprojekte
Diagrammen verknUpft werden <<artifacts>>
. . " . - pm.jar
in die Komponenten kdnnen die zugehdrigen gménesprojekt_gif
Klassen eingezeichnet werden gelbesProjekt.gif
rotesProjekt.gif

Ports erlauben den Zugriff auf bestimmten Teil

der Klassen und Interfaces (nicht im Diagramm)

OO0AD Prof. Dr. 239
Stephan Kleuker

< »

Physische Sicht: vorgegebene HW mit Vernetzung |.........

e Einsatz- und Verteilungsdiagramm (deployment diagram)

e Knoten steht fur physisch vorhandene Einheit, die tber
Rechenleistung oder/und Speicher verfligt

e <<executable>> (ausfihrbare Datei) und <<artifact>> (Datei)
mussen zur HW-Beschreibung nicht angegeben werden

ProjektmanagerClient
<<gxecutable>> <<database>>

projektdaten.jar - Datenbank-Server
LAN/10Mbi :
20 /2Mbit

1 | Projektverwaltungsserver

https/LA - <<executable>>
pm.jar

Personalverwaltungsserver

<<gxecutable>>
mitarbeit.jar

LAN/1DOMbit

Backup-Server

Prof. Dr. 240

OOAD
Stephan Kleuker

Java Module (1/7) o e

Video
e vor Java 9: alle genutzten Bibliotheken (.jar, .zip) im Classpath
eingebunden

e Klassen und Pakete kdnnen doppelt sein oder sich Gberlappen,
Auswahl abhangig von Reihenfolgen im Classpath

e neuer Ansatz: Gruppen von Paketen in Modulen vereinigen
Vorteile:
e keine zirkularen Abhangigkeiten erlaubt, bessere Struktur

e ein Paket kann nur von einem Modul im Module-Path angeboten
werden (sonst Fehler)

e aus Modulen kann eigene Java-Applikation gebaut werden, die
nur notwenige Module der JRE enthalt (statt immer vollstandige
JRE (oder JDK) auszuliefern)

';'o,?ghte'le spater orof. D, 241

Stephan Kleuker

https://youtu.be/mr_WBWhS-wk

Java Module (2/7) — Modul Deskriptor module-info.java

// optionales ,,open“ ermoeglicht Reflection
open module de.hs-osnabrueck.meinProjekt.modxy {

}

// Inhalt fuer alle nutzbar
exports de.hs-osnabrueck.meinProjekt.paketl;

// Unterpakete, wenn nach aussen sichtbar, sind anzugeben
exports de.hs-osnabrueck.meinProjekt.paketl.subpaket2;

// explizit festlegbar, welche Module zugreifen duerfen
exports de.modulSpecial to anderesModl, de.anderesMod2;

// benoetigte Module angeben
requires blubb.anderesModul;

// damit andere genutzte Module dieses Moduls auch nutzen
//koennen
requires transitive blubb.modulInAnderesModulBenoetigt

00AD Prof. Dr. 242

Stephan Kleuker

AAAAAA

Java Module (3/7) — Beispiel Klassendiagramm

OOAD

«module»
listenModul

ich.listenpack

«rr_lodule»
guiModul ListenVerw T
ich.gui 1 - listen_|-id: int
g !l +add(String): Liste -—t05 2 1. String
AT |l *adTodofTodo
TextlO : %
+dialog() || b==-===c==c-=cczoo B
«module» & \\
todoModul % X
ich.todopack L N \\
T D -todos
-ty IR A
1 \ TodoVerw Todo
N -todos _——
. == -1d: int
+add(_Stnng): Todo -text: String
+find(int): Todo

Prof. Dr.

Stephan Kleuker

< »

HOCHSCHULE OSNABRUCK
IVERSITY ENCES

243

Java Module (4/7) — in Eclipse

< »

HOCHSCHULE OSNABRUCK

e jedes Modul als eigenes Projekt

e jedes Modul ein Deskriptor
modul-info.java

e Module als Jar-Dateien
exportiert

e Module werden im Module-
Path eingebunden

& Properties for ModulGUI

ype filter tex4

Resource
Builders
Coverage

Java Build Path
Java Code Style
Java Compiler
Java Editor
Javadoc Location
Metrics

OOAD

Java Build Path

(® Source = Projects B Libraries %; Orq
JARs and class folders on the build pat
v % Modulepath

g liste.jar - exportDummyProjekt

s todo.jar - exportDummyProjekt

B\, JRE System Library [JavaSE-11]
% Classpath

Prof. Dr.

Stephan Kleuker

v =% ModulGUI
v [® src
v i ich.gui
[J] EinUndAusgabe.java
] TextIO.java
module-info. java
=\, JRE System Library

w B, Referenced Libraries

@d liste.jar - exportDummyProjekt
@4 todo.jar - exportDummyProjekt
v % ModulListe
v [# src

v it ich.listenpack
U] Liste.java
U] ListenVerw.java
module-info.java
=\, JRE System Library
v @\, Referenced Libraries
@4 todo.jar - exportDummyProjekt
v =2 ModulTodo
=\, JRE System Library
v [® src
v 1 1ch.todopack
J] Todo.java
] TodoVerw. java
module-info.java

Java Module (5/7) — Modul-Deskriptoren B

open module guiModul {
requires listenModul;

}

open module listenModul {
requires transitive todoModul;
exports ich.listenpack;

}

open module todoModul {

exports ich.todopack; // to listenModul, guiModul;
}

OO0AD Prof. Dr. 245
Stephan Kleuker

Java Module (6/7) — Module Arten e

e Java selbst in Module aufgeteilt, java.base automatisch eingetragen

e weitere Elemente der Java-Bibliothek missen angegeben werden, z.
B. requires java.sql;

Zugriffe

Application Explict Modules
* Module mit Modul-Deskriptor
Variante:open, alles fur
Reflection freigegeben

Unnamed Modules
 klassische Jars ohne
Modul-Deskriptor
* werden zusammen als ein
Modul angesehen
e exportiert alle Pakete

Automatic Modules
 klassische Jars ohne Modul-
Deskriptor
e exportiert alle Pakete
* importiert alle Pakete anderer
Module

Modulepath
yyedsset)

requires dburfit;
requires

<=t Name of automatic module 'dbunit® is unstable, it is deriwved
from the module's file name.

S LTpliigrnl niLcunci

Java Module (7/7) — kritische Analyse

e ab Java 9 mussen alle Klassen in Modulen enthalten sein

e damit ware Inkompatibilitat mit Java 8 riesig

e Trick: ,alte” Pakete gehdren implizit zu einem Default-Modul
(unnamed module); unklar wie lang diese Losung existiert; im
Module-Path werden alte Jars zu automatic modules

e viele Werkzeuge nutzen ,Innereien” der JVM, z. B. Reflection

e 7.B.JPA, automatische Generierung und Nutzung von Tabellen
zu fast beliebigen Java-Klassen

e diese Nutzung ist per Default in Java 9 ausgeschaltet, muss Uber
,open“ ermoglicht werden (auch beim VM-Start konfigurierbar)

¢ viele Frameworks und Bibliotheken laufen immer (noch) nicht
mit Java ab Version 9 zusammen

e Fazit: keine klare Empfehlung, neues Projekt mit Modulen zu

machen

00AD Prof. Dr. 247
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

8. Optimierung des
Designmodells

8.1 Design im Kleinen

8.2 Model View Controller

8.3 Vorstellung einiger GoF-Pattern
8.4 Abschlussbemerkungen zu Pattern

EEENEN

8.5 Patternorientierte Konzepte in der Programmierung

00AD Prof. Dr. 248
Stephan Kleuker

https://youtu.be/_5qKkidKjDw

Zentrale Aufgabe: von Analyse zum Design (1/2)

e Analyse der Klassen:
— haben sie klar definierte Aufgabe
— konnen Klassen vereinigt werden
— sollten Klassen aufgeteilt werden

— welche Optimierungen sind aus Design-Sicht moglich?
(zentrale Frage, untersuchen wir weiter)

e Exemplar- und Klassenvariablen muissen Typen haben
e Variablen und Methoden brauchen Sichtbarkeiten

e Methoden brauchen Rickgabe- und Parametertypen
(Signaturen); in Java und C++ spielen Ausnahmen eine Rolle

0O0AD Prof. Dr. 249
Stephan Kleuker

Zentrale Aufgabe: von Analyse zum Design (2/2)

e flr Assoziationen
— Multiplizitaten beachten
— Uber mogliche Richtungen nachdenken
— Art der Zugehorigkeit klaren
e GUI-Klassen und persistente Datenhaltung einbauen

e Anmerkung 1: Ubergang von Analyse zu Design ist durch
lterationen (Verfeinerungen) flielfend

e Anmerkung 2: Die vorgestellten Regeln sind haufig 90-10
Regeln (in 90% miissen sie angewandt werden, bei VerstoRen
muss man argumentieren kdnnen, warum)

00AD Prof. Dr. 250
Stephan Kleuker

Einschub: Coding-Guidelines

sehr wichtiges Hilfsmittel, damit alle Code lesen kénnen
auf den Folien wird fur Kompaktheit teilweise drauf verzichtet

Praktikum: minimale Regeln

Alle Imports ausschreiben import java-utit—

Eine Variante von Einrltickungen (Eclipse-Stil)

Objektvariablen und Objektmethoden vorne mit this.
public int getMatnr() {
return this.matnr;

}

Bei if und Schleifen immer Block mit geschweiften Klammern
Keine Klasse im Default-Package (,,ganz oben®)

Alle Namen sind intuitiv lesbar flr andere Leute

Pro Zeile nur ein Befehl

Java-ubliche CamelCase-Notation

0O0AD Prof. Dr. 251

Stephan Kleuker

Einfache Basisregeln

8.1

e KISS = Keep It Simple Stupid, man soll die einfachst moégliche
Realisierung wahlen, die das Problem vollstandig 10st und gut
nachvollziehbar ist (kein ,, Quick and Dirty“, sondern eine klare
Entscheidung fiir einen einfachen Entwicklungsstil)

e YAGNI =You Ain’t Gonna Need It, keine Verallgemeinerungen
entwickeln, die das Design fur theoretisch in der Zukunft
vielleicht gewilnschte Erweiterungen vereinfachen

Prof. Dr. 252

OOAD
Stephan Kleuker

< »

Keine allwissenden Klassen

andere Fertigstellungsgrad einer Projektaufgabe

| | '
etAufgabe(i) '
e = |
s B " DR l
setFertigstellungsgrad(42) >
|
e T ==
| | |
besser:
:Projektverwaltung :Projekt pa:Projektaufgabe
| A : | |
[femgstellungsgradAnpassen(l_AZ)’ | setFartinstélinnsarai(a2) |
e SR e e i
B | |
| | .
0O0AD Prof. Dr. 253

Stephan Kleuker

yverpacken” von Exemplarvariablen (Aggregation) |....... -

e Generell kann man fur Exemplarvariablen vom Typ X statt einer
get-Methode alle Methoden von X anbieten, die man an die
Exemplarvariable weiterleiten will.

e Ansatz auch fiir Collections geeignet

XNutzend X
/* weitere Exemplarvariablen */ -a:int
+getA():int -X -b:!nt
+getB():int 1 7|-cint
+setA(int):void +getA():int
+produkt():int +getB():int
+getC():int
e XNutzend: Aufrufe an x weiterleiten +getA((i)nt)'void
(Methoden miissen nicht gleich heiR3en) +setB(int):void
public int getA(){ +setC(int):void
return this.x.getA(); e
} +summe():int
public void setA(int a){ +produkt():int
this.x.setA(a);
00AD } Prof. Dr. 254

Stephan Kleuker

Erinnerung: Bedeutung von Schnittstellen

e Schnittstellen sind zentrales Element des Design by Contract

e vorgegebene Aufgabe: Implementiere mir folgende
Funktionalitat ... beschrieben durch

— Vorbedingung
— Signatur <Sichtbarkeit> <Methodenname>(<Parameter>)...
— Nachbedingung
e entwickelnde Person realisiert OO-Programm (Details sind frei)
e entwickelnde Person garantiert, dass Schnittstelle (oder
Fassade) gewlinschte Funktionalitat liefert
e generell sollte man bei Vererbungen und Implementierungen
die am wenigsten spezielle bendtigte Klasse nutzen; deshalb

List<Projektaufgaben> aufgaben und nicht
ArraylList<Projektaufgaben> aufgaben im Code
0O0AD Prof. Dr. 255

Stephan Kleuker

< »

zentrale Folie: Design by Contract

e abstrakte Klasse stellt einen Vertrag dar
e Realisierer garantiert die gewlinschte Funktionalitat
e nutzende Person kann konkretes Objekt mit Funktionalitat erhalten

e wie die Realisierung aussieht, ist allein Sache der realisierenden
Person

<<interface>>

_bekommt garantierte Vertrag _ verantwortlich _ _
Funktionalitat Randbedingungen fur Realisierung
_ hatkeinen Einfluss~, | * MeM1(PanErgyp | freiin derAnt_ _ _
auf die Realisierung 5 der Realisierung
Nutzung Randbedingungen Entwicklung

+ meth2(Par):Ergtyp
gewiinschte Y\ — _ s L I Realisierung
Funktionalita

00AD Prof. Dr. 256
Stephan Kleuker

LGrundidee von Design-Pattern
8.2

Damit nicht alle Klassen eng miteinander gekoppelt sind, gibt es
Ansatze:

e die Aufgaben einer Klasse von der Verwaltung der Klassen, die
Informationen dieser Klasse benoétigen, zu trennen

e die Erzeugung von Objekten moglichst flexibel zu gestalten

e |nterfaces zur Trennung von Implementierung und angebotenen
Methoden einzusetzen

e Hierzu werden so genannte Design-Pattern eingesetzt, die fir einen
bestimmten Aufgabentyp eine flexible Losung vorschlagen

e oft zitiert: E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Entwurfsmuster, Addison-Wesley, 2004 (Gang of Four [GoF]-Buch,
hier neuere Auflage)

00AD Prof. Dr. 257
Stephan Kleuker

Model-View-Controller P
Video

e Typisch fur graphische Oberflachen ist, dass es Objekte zur Eingabe
gibt, die zur Bearbeitung der eigentlichen Inhaltsklasse fiihren, die
dann eventuell zu Anderung der Anzeige fiihren

e Die Aufteilung in die drei genannten Aufgaben fuhrt zum Model-
View-Controller (MVC)-Ansatz

e MVC wurde zuerst in Smalltalk Ende der 80'er des vorigen
Jahrhunderts eingesetzt:

— Model: Zustandsinformation der Komponente (Inhaltsklasse)

— View: Beobachter des Zustands, um diesen darzustellen; es kann
viele Views geben

— Controller: Legt das Verhalten der Komponente auf
Benutzungseingaben fest

0O0AD Prof. Dr. 258
Stephan Kleuker

https://youtu.be/-MRm3WtiXAI

MVC - einfacher Kommunikationsablauf | ... -

c:Controller m:Model v:View

aendere()

aendere() eige()

// Variante: Model kennt View

// Erzeugung

View v = new View();

Model m = new Model(v);
Controller ¢ = new Controller(m);

0O0AD Prof. Dr. 259
Stephan Kleuker

MVC: was bei mehreren Views

aendere()

OOAD

aendere() eige()

// Erzeugung

View v = new View();

View2 v2 = new View2();

Model m = new Model(v, v2); // ???
Controller c = new Controller(m);

Prof. Dr.
Stephan Kleuker

c:Controller m:Model v:View

zeige()

HHHHHHHHHHHHHHHHHHH

v2:View?2

genereller Ablauf
gut, aber Erstellung

holzern

260

MVC: mehrere Views L -

c:Controller m:Model v:View v2:View?2

aendere()

aendere() eige()

zeige()

// Erzeugung
View v = new View();

View2 v2 = new View2(); besser, aber View vom

Model m = new Model(); Model getrennt, neue
m.add(v); Daten immer als
m.add(v2); Parameter von zeige()
Controller c = new Controller(m);

00AD Prof. Dr. 261

Stephan Kleuker

MVC: Model halt Sammlung angeschlossener Views| ... -

extern // Erzeugung

new Model() | Model m = new Model();
m:Model Controller c

= new Controller(m);
new Controller(m) ¢:Controller View v = new View(m);

View2 v2 = new View2(m);

new View(m) v:View
add(this)
new View2(m) v2:View?2
add(this)
Prof. Dr. 262

OOAD
Stephan Kleuker

MVC: Model halt Sammlung angeschlossener Views| ... -

c:Controller m:Model v:View v2:View?2
aendere()
aendere() _
zeige()
< getAktuell()
—————————— >
zeige()

getAktuell()

_____________________ >
00AD Prof. Dr. 263

Stephan Kleuker

T,

Java-Beispiel zum MVC (1/7)

Modellwert: 43

Nutzung

;-':'::_: Ich bin der Yiew

=100]

¥ Ich bin der Controlle

minus-Knopf dricken

T
2

< changeValue(-1)

xModelCh

Stephan Kle

uker

XStarter p
| x=new XModel() | | |I_l5i | | minus
__________ x:XModel| —=-1
T
new XControllef(x
_____________ g »[xController
new XView(x) T
l | XView
' addXModelListgner(this) I
i i
PR S T T S ST T S T T T TTTET T
plus-Knopf driicken ; o] |
_I< changeValue(1) !
xModelChanded()
[? getWert()
| View andert [
TS > Anzeige
i

View andert
Anzeige

264

OSNABRUCK

Java-Beispiel zum MVC (2/7)

< »

HOCHSCHULE OSNABRUCK

XModel

- modellwert:int = 42

-listener

®

+ addXModelListener(x:ModelListener).void
+ fireXModelChanged():void

+ getWert():int

+ changeValue{deltaint):void

N

1 | -xmodel

XController

+ XController{xmodel:XModel)
+ plus():void
+ minus():void

0O0AD Prof. Dr.
Stephan Kleuker

«Interface»
XModellistener

+ xModelChanged():void

£

XView

+ XView(x:XModel)
+ xModelChanged|():void

XStarter

+ main{args:String[]):void

265

Java-Beispiel zumMVC(3/7)

public class XModel{
private List<XModelListener>listener = new ArrayList<>();
private int modellwert = 42;

public void addXModellListener(XModelListener x){
this.listener.add(x); //Verwaltung der Listener des Modells

}

public int getWert(){ //Auslesen der Modellinhalte
return this.modellwert;

}

public void changeValue(int delta){ //Veranderung des Modells
this.modellwert += delta;
this.fireXModelChanged(); // alle informieren

}

private void fireXModelChanged(){
for(XModelListener x: this.listener)
X .XModelChanged();

00AD Prof. Dr. 266
Stephan Kleuker

Java-Beispiel zum MvC(4/7) e -

private JLabel jlabel = new JLabel("Modellwert: ")s
public XView(XModel x){
super("Ich bin der View");

//Rest Swing fir Anzeige

super

super

E@Override

.getContentPane().add(jlabel);
super.
super.
.setLocation(0, 0);
super.

setDefaultCloseOperation(EXIT_ON_CLOSE);
setSize(250, 60);

setVisible(true);

' public void xModelChanged() {

, this.jlabel.setText("Modellwert: "+this.xmodel.getWert());i

Prof. Dr. 267

"""""""" Stepham RIeukerr - -~~~ ~-T T T T T T oSS TS oSS s s T s o TS

Java-Beispiel zum MVC (5/7)

import java.awt.FlowlLayout;
import java.awt.event.*; // hier zur Abkuerzung, in echten
import javax.swing.*; // Projekten diesen * vermeiden

public class XController extends JFrame{
private XModel xmodel;

public XController(XModel x){
super("Ich bin der Controller");
this.xmodel = x;

JButton plus = new JButton("plus");

super.getContentPane().add(plus);

plus.addActionListener(new ActionListener(){
@Override

0O0AD Prof. Dr. 268
Stephan Kleuker

Java-Beispiel zum MVC (6/7)

JButton minus = new JButton("minus");
super.getContentPane().add(minus);
minus.addActionListener(new ActionListener(){
@Override
public void actionPerformed(ActionEvent e){

super.setDefaultCloseOperation(EXIT_ON_CLOSE);
super.setSize(250, 60);

super.setLocation(9, 990);
super.setVisible(true);

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

269

Java-Beispiel zum MvC(7/7) e -

. public interface XModellListener ({ :
. public void xModelChanged(); |
' /* Anmerkung: alternativ kann man auch geanderte E
: Werte als Parameter ilibertragen */ !

public class XStarter {
public static void main(String[] args) {
o XModel x = new XModel();
! new XView(x);

new XController(x);

0O0AD Prof. Dr. 270
Stephan Kleuker

Mehrere Views — mehrere Controller — ein Model |......
i Ich bin der View — O X i Ich bin der View - (| X
Modellwert: 42 Modellwert: 42
i Ich bin der Controller - Ol X i 1ch bin der Controller - (| X

plus minusg plus | minus
gj ch bin der View — O 4 gn ch bin der View — O 4
Modellwert: 41 Modellwert: 41
i Ich bin der Controller - O s i Ich bin der Controller - O et
plus minus plus minus
00AD Prof. Dr. 271

Stephan Kleuker

Pattern-Varianten

Pattern schlagen eine mogliche Losung vor; kann in Projekten
variiert werden

e |nterface weglassen, wenn nur eine View-Art

e Aufteilung auch sinnvoll, wenn nur ein View existiert (klare
Aufgabentrennung)

e wenn Controller und View eng verknupft, konnen sie vereinigt
werden, z. B. GUI-Elemente in Java-Swing

e Listenerverwaltung kann vom Model in Controller verlegt
werden

e auch ohne Listen ist MVC-Aufteilung sinnvoll

00AD Prof. Dr. 272
Stephan Kleuker

Ablaufvariante: Controller managt alles

HHHHHHHHHHHHHHHHHHH

c:Controller m:Model

aendere()
aendere()

zeige()

leseWerte()

// Erzeugung

Model m = new Model();

View v = new View(m);

Controller c = new Controller(m, v);

00AD Prof. Dr.
Stephan Kleuker

v:View

273

Variante der Ablaufvariante: Controller managt alles.|....... -

alt:View c:Controller m:Model

aendere()
aendere()

new View() ,
neu:View

leseWerte()

// Internet

// Web-Seite (View) ruft Controller auf

// Controller andert Model

// Controller erzeugt neuen View

// View berechnet aus Model neue Web-Seite,

// Web-Seite beinhaltet Verbindung zum Controller

00AD Prof. Dr. 274
Stephan Kleuker

MVC als Design-Konzept

e Kommunikationswege hangen von konkreter Umsetzung ab
e Viele Varianten:
— Model-Delegate (Controller und View zusammen)
— Model-View-ViewModel (eigenes Model fiir Darstellung)
— Model-View-Presenter
— Model-View-Adapter

e eine Umsetzung: Controller steuert Anderungen des Modells,
Modell teilt allen Views mit, dass eine Anderung aufgetreten ist

e folgende Folien: eine Verknltpfungsmaoglichkeit in MVC

00AD Prof. Dr. 275
Stephan Kleuker

Ansatz Observer-Observable

83 Video

e Es gibt Subjekte flir deren Zustand sich viele interessieren (z. B.
Nachrichtenkanale)

e Die Subjekte bieten die Mdglichkeit, dass sich Interessenten
anmelden (z. B. Kanal abonnieren)

e Beijeder Subjektzustandsanderung werden Interessenten
informiert (neue Nachrichten)

e |[nteressent muss sich bei Subjekt anmelden

e Damit obiges Objekt weil3, wie Interessent angesprochen
werden soll, muss Interessent Schnittstelle realisieren

e Hinweis: Enge Verwandtschaft zur hier vorgestellten Model-
View-Controller-Variante

0O0AD Prof. Dr. 276
Stephan Kleuker

https://youtu.be/dm4doc4e57A

Beobachter (Observer — Observable) @ | ... -

fDﬂ:EEDDECl’ItEF DZDEDDECHtEF}I
b.aktualisieren()

.
#

Subjet .~
4 Beobachter
+infarmieren() < —>
+anmelden(Beobachter) ' Dbedbacher +aktualisieren()
+abmelden(Beobachter)
KonkretesSubjekt KonkreterBeobachter
-subjektZustand {1 SUDjekt -beobachteterZustand
+getsSubjektZustand() +a|{tuali5iglren|[]|

A

LY

beobachteterZustand=subjekt. getSubjektZustand() %

0O0AD Prof. Dr. 277
Stephan Kleuker

Beobachter — Beispielaufgabe (1/5)

Aktienverwaltung

-aktienname: String

+benachrichtigen():void
+getAktienname(): String

#Aktienverwaltung(aktienname:String)
+anmelden(h:HandelndInterface)

-handelnde

- >

HOCHSCHULE OSNABRUCK

«Interface»
HandelndInterface

1

Aktie

- wert:int

+Aktie(aktienname:String)
+getWert():int
+setWert(wert:int):void

*

+aktualisieren(aktienname:String): void

I

Handelnd

-handelndname:String

* -aktien

+Handelnd(handelndname:String)
+aktualisieren(aktienname:String): void

+neueAktie(aktie: Aktie): void

Gegeben sei obiges Klassendiagramm, das die Nutzung des
Observer-Pattern zeigt. Dabei interessieren sich Aktien handelnde
Personen fur Aktienkurse und konnen sich bei Aktien anmelden,
die ihnen zuvor mit neueAktie Ubergeben wurden. Falls sich der
Wert dieser Aktien andert, werden alle interessierten Handelnden
benachrichtigt, welche Aktie (ihr Name) sich geandert hat. Aktien

haben einen eindeutigen Aktiennamen.

OOAD

Prof. Dr.
Stephan Kleuker

278

Beobachter — Beispielaufgabe (2/5) @ |

import java.util.ArraylList;
import java.util.List;
public class Aktienverwaltung {
private String aktienname;
private List<HandelndInterface> handelnde
= new ArraylList<>();

protected Aktienverwaltung(String aktienname) {
this.aktienname = aktienname;

}

public void anmelden(HandelndInterface h){
this.handelnde.add(h);

}

public void benachrichtigen(){
for(HandelndInterface h: this.handelnde)
h.aktualisieren(aktienname);
}

public String getAktienname(){
return this.aktienname;

}

}OAD Prof. Dr. 279
Stephan Kleuker

Beobachter — Beispielaufgabe (3/5)

public class Aktie extends Aktienverwaltung {

private int wert=42;
public Aktie(String aktienname){
super(aktienname);

}

public int getWert() {
return this.wert;

}

public void setWert(int wert) {
this.wert = wert;
super.benachrichtigen();

}

@Override
public String toString(){
return super.getAktienname();

}

$oap Prof. Dr. 280
Stephan Kleuker

Beobachter — Beispielaufgabe (4/5) = |

public interface HandelndInterface {
public void aktualisieren(String aktienname);

}

import java.util.Arraylist;
import java.util.List;
public class Handelnd implements HandelndInterface {

private String handelndname;
private List<Aktie> aktien = new ArrayList<>();

public Handelnd(String handelndname) {
this.handelndname = handelndname;

}
public void neueAktie(Aktie a){
this.aktien.add(a);
a.anmelden(this);
}
00AD Prof. Dr. 281

Stephan Kleuker

Beobachter — Beispielaufgabe (5/5) @ |

public void aktualisieren(String aktienname) {
System.out.println(handelndname
+ " hat neuen Wert fur " + aktienname +
+ this.holeAktienWert(aktienname));

}

//alternativ beim Aktualisieren Wert mitschicken
private int holeAktienWert(String aktienname){
for(Aktie a: this.aktien)
if(a.getAktienname().equals(aktienname)) {
return a.getWert();

//nie erreichen
assert(false); // Java, ist nicht JUnit!
return 0;

}

@Override
public String toString(){
return this.handelndname;

}

$oap Prof. Dr. 282
Stephan Kleuker

Pattern und Varianten

- >

HOCHSCHULE OSNABRUCK

e Fir fast jedes Pattern gibt es Varianten, die abhangig von
Randbedingungen sinnvoller sein kdnnen

Bsp.: Wertanderung mit aktualisieren() Gbertragen

Bsp.: Java hat keine Mehrfachvererbung

e Subjekt wird Interface

e Listenverwaltungin
Hilfsklasse

e Konkretes Subjekt
delegiert Listen-
aufgaben an Objekt
der Hilfsklasse

OOAD

for(Beobachter b:becbachter)
b.aktualisieren()

r
Ll

Subjekt

=
~
i

+informieren() ~
+anmelden(Beobachter)
+abmelden{Beobachter)

e

Beobachter

I

KonkretesSubjekt

-subjektZustand

1 beobachter *~

+aktualisieren()

|

KonkreterBeobachter

el
™1 subjekt

+getSubjektZustand()

-beobachteterZustand

+a ktualisieﬁren{}

N

%

beobachteterZustand=subjekt.getSubjektZustand() D1

Prof. Dr.

Stephan Kleuker

283

Adapter - Problem

Video

Szenario:

e Klasse IchBrauchB bendtigt ein Objekt der Klasse B, genauer
spezielle Funktionalitat (Methode) der Klasse B

e Wir haben bereits eine Klasse C, die die von IchBrauchB von B
geforderte Funktionalitat anbietet

e C bietet die gewtlinschte Funktionalitat unter dem falschen
Methodennamen an, da C Teil einer komplexen Klassenstruktur
ist, kann C nicht verandert werden

Losung:

e Schreibe Adapterklasse, die sich wie B verhalt (von B erbt bzw.
Interface B implementiert) und Objekt der Klasse C aggregiert

e Adapter leitet Aufruf der von IchBrauchB gewiinschten

Funktionalitat an C weiter

0O0AD Prof. Dr. 284
Stephan Kleuker

https://youtu.be/lRDBSA12BDE

Adapter - Losung

HHHHHHHHHHHHHHHHHHH

IchBrauchB

Interface
benutzth « ?

+ IchBrauchB(b: B) b 0.1 5
chbrauc . .
+ machWasToll
+ bMachtWasTolles() mac ZS olles()
I
I
C I
: Adapter
___ddelegiert
+ C() ~¢c 0.1 + Adapter()
+
+ kannWasWasAuchBKoennenSoll() machWasTolles()

public class Adapter implements B{
private C ¢ = null;

public Adapter(){ this.c = new C();}
@Override
public ... machWasTolles(){

return this.c.kannWasWasAuchBKoennenSoll();
}

00AD } Prof. Dr. 285
Stephan Kleuker

- >

Fassade nach auf3en

Zweilundvierzig

Vier

-itint

+machda(int):void

+mach4b():komma

+mach2a(int):void

+mach2b():String

+mach2c(int,int):bool
Ty

Komma

+machéa(int):void K, int
v._| +mach4b():komma 0.17 7
7> +machdc(int int):bool Jrint
+switch():vaoid
> +mult{int):int

s

T Zwel

Fassade:

genau wie bei Aggregation
public void mach4a(int i}

v.machdali};

}

public void mach2a(int i}

z.mach2ali};

}

N s: String
+mach2a(int):void
+mach2b():String
+mach2c(int,int):bool
e Generell sollen Klassen eng zusammen-
hangend sein, z. B. Methoden kdénnen nicht auf

mehrere Klassen verteilt werden

OOAD

e anderen Nutzungen mochte man nur eine
einfache externe Sicht bieten, deshalb liefern
zusammenhangende Klassen haufiger eine

Fassadenklasse (,,davorgeklatscht”) nach aullen

Prof. Dr. 286
Stephan Kleuker

Einsatzmaoglichkeiten von Sichtbarkeiten s

e Standard-OO-Programmierung: Exemplarvariablen private [oder
protected], Exemplarmethoden public (analog fiir Klassenvariablen
und —methoden)

e |n Spezialfallen kdnnen Sichtbarkeiten geandert werden, Beispiel:

— Im gesamten System gibt es ein Objekt, mit dem die Verbindung
zu anderen Systemen aufgebaut wird

— Wird das Objekt das erste Mal benoétigt, wird es erzeugt, bei
weiteren Anfragen werden Referenzen auf dieses identische
Objekt zurtick gegeben

e Objekt muss in Klassenvariable gespeichert werden

e Nutzungen dirfen keine Konstruktoren aufrufen, da es sonst
verschiedene Objekte gibt (Konstruktoren werden private)

e Zugriff auf das Objekt Uber Klassenmethoden

0O0AD Prof. Dr. 287
Stephan Kleuker

Singleton(2/3) L »

public class Singleton {
private int x = 0;
private int y = 0;
private static Singleton pkt = null; //fir einziges
//Exemplar

private Singleton(int x, int y){
this.x = Xx;
this.y = y;

}

public static Singleton getPunkt(){
if (Singleton.pkt == null) { // ein einziges Mal erzeugen
Singleton.pkt = new Singleton(6, 42);

}
return Singleton.pkt;

}

0O0AD Prof. Dr. 288
Stephan Kleuker

Singleton(2/3) | »

@Override

public Singleton clone(){
//echtes Kopieren verhindern
return this;

}

public void ausgeben(){
System.out.print("[" + this.x + "," + this.y + "]");

}

public void verschieben(int dx, int dy){
this.x += dx;
this.y += dy;
}
}

Prof. Dr. 289
Stephan Kleuker

OOAD

Singleton (3/3)

public class Main {
public static void main(String[] s){
Singleton pl = Singleton.getPunkt();
Singleton p2 = Singleton.getPunkt();
// Singleton sing = new Singleton();
// error: constructor not visible
pl.ausgeben();
p2.ausgeben();
if(pl == p2) {
System.out.println("\n identisch");

}
pl.verschieben(3, 5); Eg’4i1[6642]
pl.ausgeben(); E9e27}?; 471]
p2.ausgeben(); id;ntisca
Singleton p3 = pl.clone();
if(p2 == p3) {
System.out.println("\n identisch");
}
OA% Prof. Dr. 290
? Stephan Kleuker

Decorator (1/9)

HHHHHHHHHHHHHHHHHHH

Video

e gegeben ist eine Klasse mit Methoden; diese gegebenen
Methoden sollen erganzt/verandert werden

e Beispiel: Protokolliere was wird wann ausgefiihrt (Logging)
e Ansatz: gegeben einfache Klasse

OOAD

Konto

-stand:int

+einzahlen(betrag:int)
+getStand():int

Prof. Dr. 291
Stephan Kleuker

https://youtu.be/J337cRB5QBU

Decorator (2/9) P

public class Konto {
private int stand;

public void einzahlen(int betrag) ({

this.stand += betrag;
}

public int getStand() {
return this.stand;
}

public String toString() {
return "Konto{" + "stand=" + this.stand + '}';
}

00AD Prof. Dr. 292
Stephan Kleuker

Decorator (3/9)

e erganze Interface

public interface KontoInterface {
void einzahlen(int betrag);

int getStand();

public class Konto
implements KontoInterface { ..

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

«interface»
Kontolnterface

+einzahlen(betrag:int)
+getStand():int

P
I
I
|

Konto

-stand:int

+einzahlen(betrag:int)
+getStand():int

293

Decorator(4/9) -

e erganze neue Klasse (Decorator) die das Interface realisiert und
ein Objekt der Klasse als Exemplarvariable halt

e |dee: delegiere «interface»

Aufrufe an diese Kontolnterface | _ -konto
Exemplarvariable |+einzahlen(betrag:int) |~ 1

und erginze drum | *getStand()int

herum neue .A
Funktionalitat T ! <>
o flexibler: : :
: Konto KontoDecorator
Exemplarvariable .
t7t Interf T -stand:int
nutzt Intertace-1yp +einzahlen(betrag:int) +einzahlen(betrag:int)
+getStand():int +getStand():int
00AD Prof. Dr. 294

Stephan Kleuker

Decorator (5/9)

public class KontoDecorator implements KontoInterface {
private KontoInterface konto;

public KontoDecorator(KontoInterface konto){
this.konto = konto;

}

@Override

public void einzahlen(int betrag) {
System.out.println("vor einzahlen");
this.konto.einzahlen(betrag);
System.out.println("nach einzahlen");

}

@Override

public int getStand() {
System.out.println("vor getStand");
int ergebnis = this.konto.getStand();
System.out.println("nach getStand");

return ergebnis; ,..f pr.
Stephan Kleuker

OOAD

HHHHHHHHHHHHHHHHHHH

295

Decorator (6/9) P

public static void main(String[] args) {
KontoInterface k = new Konto();
KontoInterface kd = new KontoDecorator(k);
kd.einzahlen(42);
System.out.println("Stand: " + kd.getStand());
System.out.println("Konto: " + k);

vor einzahlen
nach einzahlen
vor getStand
nach getStand
Stand: 42
Konto:
Konto{stand=42}

OO0AD Prof. Dr. 296
Stephan Kleuker

Decorator (7/9) — etwas mehr Effekt (1/2)

public class KontoDecorator2 implements KontoInterface{

private KontoInterface konto;
private int schutz; // meine Privatgebuehr

public KontoDecorator2(KontoInterface konto){
this.konto = konto;

}

@Override

public void einzahlen(int betrag) {
System.out.println("vor einzahlen");
this.schutz += 4;
this.konto.einzahlen(betrag - 4);
System.out.println("nach einzahlen");

0O0AD Prof. Dr. 297
Stephan Kleuker

Decorator (8/9) — etwas mehr Effekt (2/2)

@Override

public int getStand() {
System.out.println("vor getStand");
int ergebnis = this.konto.getStand();
System.out.println("nach getStand");
return ergebnis + this.schutz;

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

298

Decorator (9/9) — sind verkniipfbar

public static void main(String[] args) {
KontoInterface k = new Konto();
KontoInterface ktmp = new KontoDecorator2(k);
KontoInterface kd = new KontoDecorator2(ktmp);
kd.einzahlen(42);
System.out.println("Stand: " + kd.getStand());
System.out.println("Konto: " + k);

HHHHHHHHHHHHHHHHHHH

} vor einzahlen
vor einzahlen
nach einzahlen
nach einzahlen
vor getStand
vor getStand
nach getStand
nach getStand
Stand: 42

Konto: Konto{stand=34}

0O0AD Prof. Dr.
Stephan Kleuker

299

Proxy

Video

< »

HOCHSCHULE OSNABRUCK

e Beim Proxy (oder Stellvertreter)-Pattern wird der Zugriff auf
eine ,wertvolle“ Ressource durch eine vorgeschaltete Klasse

gesteuert
e Nutzungen des Proxys nutzen diesen wie die eigentliche Klasse

Nutzung

OOAD

<<interface>>
KlasseMitWertvollemInhalt

ey
+anfrage()
[e R S |
| |
RealeKlasse Proxy
\-realesObjekt
+anfrage() +anfrage()

Prof. Dr.
Stephan Kleuker

300

https://youtu.be/sycH0aSiq84

Proxy — Implementierungsmaoglichkeit (1/3)

public interface KlasseMitWertvollemInhalt {
public int anfrage(String details);

}

public class RealeKlasse implements
KlasseMitWertvollemInhalt {

private Verbindung verbindung;

public RealeKlasse(String verbindungsdaten){
this.verbindung = new Verbindung(verbindungsdaten);

}

@Override
public int anfrage(String details) {
return this.verbindung.befragen(details);

3OAD Prof. Dr. 301
Stephan Kleuker

Proxy — Implementierungsmaoglichkeit (2/3)

HHHHHHHHHHHHHHHHHHH

public class Proxy implements KlasseMitWertvollemInhalt ({

//hier Variante mit Singleton (gibt Alternativen)
private static RealeKlasse realesObjekt;

public Proxy(){
if(Proxy.realesObjekt == null){
Proxy.realesObjekt = new RealeKlasse("Spezialinfos");
}

}

public int anfrage(String details) {
// hier nur Weiterleitung
// Varianten: Protokollierung, Cache, ..
return Proxy.realesObjekt.anfrage(details);

}
}

0O0AD Prof. Dr. 302
Stephan Kleuker

Proxy — Implementierungsmaoglichkeit (3/3)

public class Nutzend {

public int proxyNutzen(String anfrage){
KlasseMitWertvollemInhalt k = new Proxy();
return k.anfrage(anfrage);

}

public static void main(String[] s){
//etwas sinnlos, zu Testzwecken
Nutzend n = new Nutzend();
System.out.println(n.proxyNutzen("gib41"));

}
}

OO0AD Prof. Dr. 303
Stephan Kleuker

Proxy, Decorator — Verwandt, aber anderer Einsatz (1/2)....

<<interface>> o
KlasseMitWertvolleminhalt e
Nutzung byan iy Kontolnterface _ -konto
+einzahlen(betrag:int) [1
tanfrage() +getStand():int
i T
e 7
[FEEE T TR AT T T I l
| . | L O
RealeKlasse Proxy Konto KontoDecorator
< T -stand:int
+anfrage() S +anfrage() +einzahl en(petrag:int) +einzahl en(petrag:int)
+getStand():int +getStand():int
00AD Prof. Dr. 304

Stephan Kleuker

Proxy, Decorator — Verwandt, aber anderer Einsatz (2/2).

gemeinsam: Verhalten einer existierenden Klasse wird verandert
beide sind zur Erweiterung der Funktionalitat nutzbar

aber:

Proxy-Schwerpunkt liegt auf der Kontrolle des Objektzugriffs
Objekt wird oft im Proxy erzeugt
Verbindung wird zu Compile-Zeit bereits festgelegt

Decorator fligt Funktionalitat zu existierendem Objekt hinzu
Objekt wird injiziert (Ubergabe Konstruktor oder mit set)
Verbindung wird erst zur Laufzeit hergestellt

0O0AD Prof. Dr. 305
Stephan Kleuker

BBBBB

Strategy - Problem

e Fur eine Methode gibt es verschiedene Moglichkeiten sie zu
implementieren

e Die Wahl der Implementierungsart soll leicht verandert werden
konnen

Einsatzszenarien

e Prototypische Implementierung soll spater leicht ausgetauscht
werden kdénnen

e Wahl der effizientesten Methode hangt von weiteren
Randbedingungen ab (z. B. suchen / sortieren)

e Ausfuhrungsart der Methode soll zur Laufzeit geandert werden
konnen (z. B. nutzende Person zahlt fir einen Dienst und
bekommt statt Werbe- Detailinformationen)

0O0AD Prof. Dr. 306
Stephan Kleuker

Strategy - Losungsbeispiel

- >

HOCHSCHULE OSNABRUCK

Dienstanbieter

benutztk . «Interface»

+ Dienstanbieter{strat: AbstrakteStrategie)
+ bildGeben(): Bild

public class Dienstanbieter{ S
private Abstraktestrategie strat=nuill,

public Dienstanbieter(Abstraktestrategie a){
this.strat=a:

}

public Bild bildGeben(){
return strat.bildBerechnen();

!
}

0.17| AbstrakteStrategie
strat | + bildBerechnen():Bild

.EF».

|
| PremiumReasolution

+ bildBerechnen():Bild

LowResolution _ HighResolution
+ bildBerechnen():Bild + bildBerechnen():Bild
public static void main(String [] s){ AN

f* far arme Wichte */

Dienstanbieter d= new Dienstanbieter(
new LowResolution()),

Bild b= d.bildGeben();

}

0O0AD Prof. Dr. 307
Stephan Kleuker

State-Pattern (eine eigene Variante) o

HHHHHHHHHHHHHHHHHHH

Messstation «abstract»
-name:String Zustand
+zustandAendern(wert:int):void #uint
+ausgeben():void £~ $Zustand(x:int)
1 +selX{x.int). Zustand
+status():String
Fa
x>=42 "

[] ZustandOK ZustandKritisch
+ZustandOK(x:int) +ZustandKritisch(x:int)
+setX(x:int):Zustand +setX(x:int).Zustand
+status():String +status():String

0O0AD Prof. Dr. 308

Stephan Kleuker

State-Pattern — Implementierungsauszug (1/3)

public abstract class Zustand {
protected int Xx;

public abstract Zustand setX(int x);
public abstract String status();
protected Zustand(int x){
this.x = Xx;
}
}

* Jede zustandsverandernde Methode (hier setX) fuhrt
Anderungen aus und gibt Folgezustand zurlick

e Zustand konnte auch veranderbarer Parameter sein

0O0AD Prof. Dr. 309
Stephan Kleuker

State-Pattern — Implementierungsauszug (2/3)

public class ZustandOK extends Zustand{

public ZustandOK(int x) {
super(x);
}

@Override
public Zustand setX(int x) {
super.x = X;
if(x >= 42) {
return new ZustandKritisch(x);

S;turn this;
}
@Override
public String status() {return "alles ok";}
}
00AD Prof. Dr. 310

Stephan Kleuker

State-Pattern — Implementierungsauszug (3/3)

public class Messstation {
private String standort = "City";
private Zustand z = new ZustandOK(©);

public void zustandAendern(int wert){
this.z = this.z.setX(wert);

}

public void ausgeben(){
System.out.println(this.standort
+ " Zustand: " + this.z.status());

0O0AD Prof. Dr. 311
Stephan Kleuker

Umsetzung klassischer endlicher Automaten ... -

e Automat mit Startzustand S1, Menge von Endzustanden {S3}
und Eingabezeichen a, b; akzeptiert Sprache aab”

a_)2 Zustand | Zeichen | Folge-
Sa 9 zustand
N\
S1 a S2
S1 b S4
ab S2 a S3
public class S3 implements Zustand {) b 54
@Override
public Zustand a() { 53 a >4
return new S4(); S3 b S3
J 5S4 a 5S4
@Override
public Zustand b() { >4 b >4
return this; Prof. Dr. 312

OOAD
Stephan Kleuker

Command-Pattern e

Video
e Problem: unterschiedliche Aktionen werden zentral ausgefuhrt
und verwaltet

e Ansatz: Stecke detaillierte Ausfihrung in ein (Command-)
Objekt; diese haben gemeinsames Interface

e Command-Objekte kennen Details der Ausfiihrung
e Steuerung dann einfach ander- und erweiterbar

e Beispiel: Kleiner Taschenrechner mit + M| v+ | m-
und — und einem Zwischenspeicher fir - - - "
einen Wert, der dann aufaddiert oder . : c
subtrahiert werden kann
1 2 3
0
00AD Prof. Dr. 313

Stephan Kleuker

https://youtu.be/jjgmQUmZSi0

Bild aus der Literatur

Client Invoker Command
o
+execute()
' i
I
: Receiver ConcreteCommand
: EN < -state
| +action() -receiver +execute() L
: =
[s kY st e 5 (el s =% Dol K recelver.action()[ﬁ

e Command ist abstrakt, zeigt Ausfihrungsoperation

e ConcreteCommand ist Umsetzung flir Receiver

e Receiver fuhrt Operation aus

e |nvoker kennt Commands, startet Ausfiihrung

e (Client erzeugt ConcreteCommand und setzt Receiver

OOAD

Prof. Dr.
Stephan Kleuker

< »

HOCHSCHULE OSNABRUCK

314

Beispiel 1/13 : Rechner 1/2

package business;
public class Rechner {

private int anzeige;
private int speicher;

public int getAnzeige() {
return this.anzeige;
}

public void setAnzeige(int anzeige) {
this.anzeige = anzeige;
}

public int getSpeicher() {
return this.speicher;
}

public void setSpeicher(int speicher) {
this.speicher = speicher;
}

OO0AD Prof. Dr. 315
Stephan Kleuker

Beispiel 2/13 : Rechner2/2 L

public void addieren(int wert) {
this.anzeige += wert;

}

public void subtrahieren(int wert) {
this.anzeige -= wert;

}

public void speichern(){
this.speicher = this.anzeige;
}

public void speicherAddieren(){
this.anzeige += this.speicher;

}

public void speicherSubtrahieren(){
this.anzeige -= this.speicher;

}

@Override

public String toString(){
return "Speicher: "+ this.speicher +" Wert: "
+ this.anzeige;

}

3OAD Prof. Dr. 316
Stephan Kleuker

Beispiel 3/13 : Klassischer Dialog 1/2

package io;
import business.Rechner;

public class Dialog {
private Rechner rechner = new Rechner();

public void dialog() {
EinUndAusgabe ea = new EinUndAusgabe();
int eingabe = -1;
while (eingabe != 0) {
System.out.println("(©) Programm beenden\n
+ "(1) addieren\n" + "(2) subtrahieren\n"
+ "(3) Anzeige in Speicher\n"
+ "(4) Speicher addieren\n"
+ "(5) Speicher subtrahieren");
eingabe = ea.leselInteger();
switch (eingabe) {
case 1: {
System.out.print("Wert eingeben: ");
this.rechner.addieren(ea.leseInteger());
break;

0O0AD } Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

317

Beispiel 4/13 : Klassischer Dialog 2/2

case 2: {
System.out.print("Wert eingeben: ");
this.rechner.subtrahieren(ea.leselnteger());

break;
}
case 3: {
this.rechner.speichern();
break;
}
case 4: {
this.rechner.speicherAddieren();
break;
}
case 5: {
this.rechner.speicherSubtrahieren();
break;
}
}
System.out.println(this.rechner);
93;D Prof. Dr.

Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

318

Beispiel 5/13 : Funktioniert immerhin ...

(@) Programm beenden (4) Speicher addieren
(1) addieren 4

(2) subtrahieren Speicher: 42 Wert: 84
(3) Anzeige in Speicher (5) Speicher subtrahieren
(4) Speicher addieren 5

(5) Speicher subtrahieren Speicher: 42 Wert: 42
1 (@) Programm beenden
Wert eingeben: 43 %)

Speicher: 0 Wert: 43 Speicher: 42 Wert: 42
(2) subtrahieren

2

Wert eingeben: 1
Speicher: 0 Wert: 42
(3) Anzeige in Speicher
3

Speicher: 42 Wert: 42

Prof. Dr. 319
Stephan Kleuker

OOAD

[o < »
Beispiel 6/13 : Ansatz: Steuerungsklassen
io.commands main
«interface» Dial
Command | _ HI0f)
+execute() | -aktionen * :
9 +dialog()
-———
Addieren
+execute() : business
+toString():String :— -recr\r}er 1
SpeicherAddieren
| -rechner[P Rechner
: Rl anzeige:int
+toString():Stri " R -
. “"ll oString():String rechner |1 _speicherint
Subtrahieren P TE————— - 1> +addieren(int)
+execute() L————— | jl sl +subtrahieren(int)
+toString():Stri ' i : ~.| +speichern()
g():String | |SpeicherSubtrahieren . . Technerit | 4epeichatAddiaren()
texecute() AnzeigeSpeichern +speicherSubtrahieren()
*oString():String | | +execute() o] +oString():String
+toString():String
00AD Prof. Dr. 320

Stephan Kleuker

Beispiel 7/13 : Pattern-Nutzung

OOAD

Client Invoker Command
>
+execute()
| i
|
: Receiver ConcreteCommand
: < -state
| +action() -receiver +execute() .
| N T
U S SR Y U S S g)
Dialog B aktione Command
+execute()

| JAN

| |

: Rechner Addieren \
: < ‘
[reCchner 4 addieren() -rechner | +execute()

: +subtrahieren() /lr\

R el o A A S i e Al B A Sk i e £

Prof. Dr.

receiver.action()[\—\]

Stephan Kleuker

\

funf Varianten [ﬁ

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY Of IED SCIENCES

321

Beispiel 8/13 : Umsetzung1/3 L

package 1o.commands;
public interface Command {
public void execute();

}

package io.commands;

import main.EinUndAusgabe;
import business.Rechner;

public class Addieren implements Command { : _
private Rechner rechner; typischerweise werden

public Addieren(Rechner rechner){ Zusatzinformationen

this.rechner = rechner; benétigt
} . eigentliche
@Override Ausfuhrung

public void execute() {
System.out.print("Wert eingeben: ");
this.rechner.addieren(new EinUndAusgabe().leseInt());

}

@Override
public String toString(){return "addieren";}
} 00AD Prof. Dr. 322

Stephan Kleuker

Beispiel 9/13 : Umsetzung 2/3 (Varianten -> Praktikum)..

package main;

import java.util.HashMap;

import java.util.Map;
import business.Rechner;

public class Dialog {

private Rechner rechner

= new Rechner();

private Map<Integer,Command> aktionen = new HashMap<>();

public
this
this
this
this
this

doAD

Dialog(){

.aktionen
.aktionen
.aktionen
.aktionen
.aktionen

.put(1,
.put(2,
.put(3,
.put(4,
.put(5
, hew

new Addieren(this.rechner));

new Subtrahieren(this.rechner));

new AnzeigeSpeichern(this.rechner));
new SpeicherAddieren(this.rechner));

SpeicherSubtrahieren(this.rechner));

Prof. Dr. 323
Stephan Kleuker

BBBBB

Beispiel 10/13 : Umsetzung 3/3

public void dialog() {

0oab

EinUndAusgabe ea
int eingabe = -1;
while (eingabe != 0) {

new EinUndAusgabe();

System.out.println(" (@) Programm beenden");
for(int tmp:this.aktionen.keySet()){

System.out.println("(" + tmp + ")
+ this.aktionen.get(tmp));

}

eingabe = ea.leselInteger();
Command com = this.aktionen.get(eingabe);
if(com != null){

com.execute();

}

System.out.println(this.rechner);

Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

324

Beispiel 11/13 : Undo

e Command-Pattern eignet sich sehr gut, Aktionen wieder
rickgangig zu machen

e es miissen alle Anderungen der Aktion bekannt und reversibel
sein

e gibt verschiedene Varianten

— Ansatz 1: jedes Command-Objekt hat undo-Methode und
wird gespeichert [nachste Folien]

— Ansatz 2: es gibt eigenes Undo-Command-Objekt als
Ergebnis von execute()

— Ansatz 3: Undo- und Command-Objekte haben keine
gemeinsame Klasse / Interface

0O0AD Prof. Dr. 325
Stephan Kleuker

Beispiel 12/13 : Variante Undo-Methode

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

i0.commands main
«interface» -
Command Dialog
s
+execute() | -zuletzt 0.1 :
+undo() < +dialog()
% -aktionen *
| x
«abstract» business
AbstractCommand -recr\a}er 1
altint Rachiner
+AbstractCommand(Rechner) e -anzeige:int
JAN -speicher:int
+addieren(int)
Addieren Subtrahieren | |AnzeigeSpeichern *+subtrahieren(int)
+speichern()
[| +speicherAddieren()
SpeicherAddieren| |SpeicherSubtrahieren *speicherSubtrahieren()
+toString():String
OOAD Prof. Dr.

Stephan Kleuker

326

Beispiel 13/13 : Variante Undo-Objekte (Skizze)

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

l0.commands main
«interface» Y Dialog
Command e
-zule
+execute():Command '
() 4 <_Wie e +dialog()
| Undo
| | -altAnzeige:int S alnass
- -altSpeicher:int HSInest
[+execgte()fCommand rahner1
Addieren +toString():String \/
+execute():Command > Rechner
. : -rechner|1]
+toString():String e
-rechner

OOAD

Prof. Dr.
Stephan Kleuker

327

Fazit Command-Pattern

e generell oft bei Steuerungen einsetzbar
e oft gut fur Undo- und Redo geeignet

e meist individuelle Varianten des Patterns sinnvoll

e (in UML-Diagrammen oft zusatzliche Klasse, die auf Command
zugreifen kann)

e Command-Klassen missen einfach an bendtigte Informationen
kommen kénnen; wird dies kompliziert, ist der Pattern-Einsatz
nicht sinnvoll

00AD Prof. Dr. 328
Stephan Kleuker

Visitor Pattern (1/5) - Idee

Video

e Esgibt eine zentrale Aufgabe zur Verarbeitung mehrerer
Objekte unterschiedlicher Klassen

e Diese Klassen anzupassen ist aufwandig, Gefahr von Copy &
Paste

e Verarbeitung soll an einer Stelle passieren, um Synergien zu
nutzen und leicht auf Anderungen reagieren zu kénnen

e Beispiel: In einer Reiseverwaltung werden Reisen aus
unterschiedlichen Bausteinen, wie Hotel- und Mietwagen-
Reservierungen zusammengestellt, fur alle Fach-Entitaten soll
es Umwandlungsmoglichkeiten nach XML und JSON geben

00AD Prof. Dr. 329
Stephan Kleuker

https://youtu.be/uQZGQBON6VE

Visitor Pattern (2/5)-Ansatz @ | -

e Neues Interface fir Zugriff eines

Visitors L
e |n der Methode wird visit()- +accept(v:Visitor)
Methode des Visitors mit A
Parameter this aufgerufen :
e Visitor kann damit auf besuchtes o |
Objekt zugreifen — ST
+accept{v:Visitor) :
|
e Hinweis: Rickgabeparameter Plw :
weggelassen, sind - ———
aufgabenindividuell zu bACCepCYISIIR L
definieren (cast bei Object | v.visit(this) B]
notwendig)
00AD Prof. Dr. 330

Stephan Kleuker

Visitor Pattern (3/5) - Umsetzung

HOCHSCHULE OSNABRUCK

e Statische Polymorphie, fir jede besuchte Klasse eigene
Methode (mit eigener Riickgabe)

«interface»
Visitor

+visit(h:Hotel)
+visit(p:Pkw)

XMLVisitor

+visit(h:Hotel)
+visit(p:Pkw)

JSONVisitor

.._._._._._.J_________D>

+visit(h:Hotel)
+visit(p:Pkw)

OOAD

Prof. Dr.
Stephan Kleuker

«interface»
Basis

+acceptv:Visitor)

Hotel

+acceptv:Visitor)

Pkw

+acceptv:Visitor) X

L._._._._._.L._._._._E>

-

v.visit(this) '5]

331

Visitor Pattern (4/5) - Nutzung

for(Basis b:bas) {
System.out.println(b.accept(vis));

} Nutzer

-bas

«interface»
Visitar

-vis | +visit(h:Hotel)

OOAD

T2 +visit(p: Pkw)

XMLVisitor

+visit(h:Hotel)
+Visit(p: Pkw)

JSONVisitor

.._._.___...J.___._”_E>

+visit(h:Hotel)
+VIsit(p: Pkw)

Prof. Dr.

*

< »

HOCHSCHULE OSNABRUCK
NIVERSITY ENCES

«interface»
Basis

+accept{v:Visitor)

Hotel

+accept{v:Visitor)

Pkw

+accept{v:Visitor) "

JAN

|
|

|

|

- —
|

|

|

|

|

=1

Stephan Kleuker

\ v visit(this) 'ﬁ

332

Visitor Pattern (5/5) - Diskussion

HHHHHHHHHHHHHHHHHHH

Wesentlicher Vorteil: fachliche
Funktionalitat zu bestimmten Themen
kompakt in konkreten Visitor-
Realisierungen gebindelt (-> einfach

Wart- und Erweiterbarkeit)
Hotel

Alternativ: Direkte Nutzung eines

Interfaces, Berechnungen in jeder OXMLO
Klasse notwendig (weniger Klassen, +0J SON()

schwerer wartbar)

Pkw
Alternative abhangig von Komplexitat
und Wahrscheinlichkeit einer +oXML()
Anderung wahlbar +H0JSON()

Visitor ermoglicht Klassen zu erganzen
ohne deren Code anzufassen

0O0AD Prof. Dr.
Stephan Kleuker

«interface»
Format

+HaXML()
+0JSON()

333

Verantwortlichkeitsmuster — GRASP-Pattern

Video

GRASP (General Responsibility Assignment Software Patterns)

(Folien basierend auf Prof. T. Gervens)

Prof. Dr.
Stephan Kleuker

OOAD

Expertenmuster

Creator

Low coupling

High cohesion

Don‘t talk to strangers
Kunstgebilde

Command Query Separation

nach C. Larman

HHHHHHHHHHHHHHHHHHH

334

https://youtu.be/8lfuDS7gLyw

Muster: Experte

Name: Expert(e)
Regel:

Man uUbertrage eine gegebene Aufgabe bzw. eine
Verantwortlichkeit auf diejenige Klasse, die das notwendige
Wissen besitzt!

Hintergrund: Man hat:

— einerseits eine Vielzahl von Klassen (aus der Analyse oder
vorherigen Gestaltungschritte)

— und andererseits eine Vielzahl zu vergebender Aufgaben
und Verantwortlichkeiten

0O0AD Prof. Dr. 335
Stephan Kleuker

Beispiel: Expert (Fachwissen)

HHHHHHHHHHHHHHHHHHH

. | Girokonto
Bank
_ > -betrag
-zinssatz .
— -laufzeit
e Frage: Wer berechnet die Zinsen?
e Mogliche Antworten: *
— Objekt der Klasse Girokonto, denn es kennt den
Betrag und die Laufzeit Buchend
— die Bank, denn sie kennt den Zinssatz -name

e vorzuziehen: Die erste Moglichkeit, denn Girokonto
besitzt mehr notwendiges Wissen und erhalt Ergebnis
e Bemerkung:

— Fachwissen ist teilweise tber mehrere Klassen
verteilt, man muss entscheiden, wer die groRte
Expertise ist

— Alle Objekte konnen aktiv werden (anders als bei

vielen realen Objekten)

0O0AD Prof. Dr.
Stephan Kleuker

336

Muster: Creator

Name: Creator

Regel: Gegeben sei eine Klasse A. Die Aufgabe, Objekte dieser
Klasse zu erzeugen (Konstruktoraufrufe), soll an eine Klasse
Ubergeben werden, die

— ein Aggregat von A-Objekten ist
— zu A-Objekten in enger Beziehung steht

— das notwendige Wissen (Initialisierungsdaten) besitzt, um A-
Objekte zu erzeugen

Hintergrund:

e Die Objektwelt ist dynamisch, standig entstehen neue Objekte.
Objekterzeugung ist daher eine wichtige Aufgabe; die
Zustandigkeit dafur sollte sorgfaltig vergeben werden

0O0AD Prof. Dr. 337
Stephan Kleuker

Beispiel: Creator (1/2)

HHHHHHHHHHHHHHHHHHH

Pruefungsamt

-fakultaet:String

-listen

Klausurliste

Student

-matrnr:long
-name:String

*

_ -studi

-semester:String
-studiengang:String

Teilnahmeeintrag

/

-angemeldetAm:Date
-abgemeldetAm:Date
-note:int

Wer legt wen an? Zum Beispiel:

Klausur

Teilnahmeeintrag

OOAD

Klausur
-klausur _

——| -modul:String
-pruefer:String
-datum:Date

-eintraege

. angelegt durch Klausurliste

Prof. Dr.
Stephan Kleuker

. angelegt durch Klausur

338

Beispiel: Creator (2/2) -

Kommunikationsdiagramm: (ausdrucksstark wie einfaches
Sequenzdiagramm)

—

:Prufungsamt

1. richteKlausurEin(...)

1 1.1 erstelleKlausur(...)

2.1 melden(...)
‘Klausurliste

2. anmelden(...)

‘Teilnahmeeintrag

1 1.1.1 new Klausur(...)

2.1.1 macheEintrag(...)

newTeilnahmeeintrag(t=
:Klausur

0O0AD Prof. Dr. 339
Stephan Kleuker

Muster: Geringe Kopplung

Name: “geringe Verbindung” bzw. “low coupling”

Regel: Aufgaben unter den Klassen so verteilen, dass die
Abhangigkeiten unter den Klassen moglichst gering sind!

Hintergrund: Klassen sollten méglichst isoliert sein, denn dadurch
werden

— Entwicklung (einschlielilich Test)
— Verstandnis
— Wiederverwendbarkeit

der Klassen erleichtert

0O0AD Prof. Dr. 340
Stephan Kleuker

Beispiel: Geringe Kopplung (1/2)

e Aufgabe: Es soll die Note eines Klausurteilnehmers ermittelt
werden. Eine Losung als Kommunikationsdiagramm kénnte
sein:

. —l
1.1. k=liefereKlausur(modul) -Klausurliste

1. note=ermittleNote(studium,sem

‘Prufungsamt

—
,modul,matrnr)

g

1.3. note=getNote()

1.2. e=liefereEintrag(matnr)

e:Teilnahmeeintrag k:Klausur

Schlecht!

0O0AD Prof. Dr. 341
Stephan Kleuker

Beispiel: Geringe Kopplung (2/2)

HHHHHHHHHHHHHHHHHHH

1. note=ermittleNote(studium

,sem,modul,matrnr)

1.1, note=ermitt

:Prufungsamt

—

‘Klausurliste

e:Teilnahmeeintrag

1.1.1. l

k=fingleKlausur(modul)

1.1.2. note:sagNote(Imatrnr)

P R—

k:Klausur

Besser:

1.1.2.2. note=getNote()

1.1.2.1.e=findeTE(matrnr)

e keine Abhangigkeit zwischen Priifungsamt und Klausur
e Priifungsamt benotigt kein Wissen Uber Organisation von Klausur
e entspricht auch dem “Experten-Muster”

OOAD

Prof. Dr.
Stephan Kleuker

342

Muster: hoher Zusammenhalt = L. -

Name: “hoher (funktionaler) Zusammenhalt” bzw. “high cohesion”

Regel: Die Verantwortungen, die einer Klasse Gbertragen werden,
sollten

e 3hnlich oder
e zueinander verwandt sein

Hintergrund: Klassen, die unterschiedlichste Aufgaben erfiillen, sind
schwierig

e zU verstehen
e 7zU warten

e wiederzuverwenden

0O0AD Prof. Dr. 343
Stephan Kleuker

Beispiel: hoher Zusammenhalt o e

Prafungsamt ——>| Klausurliste —l
*

Dozierend [€— Klausur

e Die Klasse Klausur enthalt die Methoden

— anzahlTeilnehmende() Klausur
anzahlTeillnehmende():int

notendurchschnitt():double
Standardabweichung():double
drucken():String
getDozierend(): String

— notendurchschnitt()
— standardabweichung()
— getDozierend()

etc., aber z.B. nicht Methoden wie
— setDozierendname()

— gibMatrikelnummer(String name)

00AD Prof. Dr. 344
Stephan Kleuker

Muster: Don’t Talk to Strangers

Name: “Don’t talk to strangers”

Hintergrund: Ein Klient habe eine Assoziation zu einem (direkten)
Objekt. Dieses wiederum habe eine Assoziation zu einem
anderen (fir den Klienten indirekten) Objekt.

Regel: Dann sollte das direkte Objekt die Zustandigkeit erhalten,
mit dem indirekten Objekt zu kommunizieren (und nicht der
Klient), so dass der Klient nichts Gber das indirekte Objekt
wissen muss.

00AD Prof. Dr. 345
Stephan Kleuker

Konkretisierung: Don’t Talk to Strangers

e Dieses Muster definiert Randbedingungen, zu welchen anderen
Objekten Nachrichten geschickt oder nicht geschickt werden
sollten.

e Erlaubte Nachrichten:

— Zu dem this Objekt (oder self)
— Einer Exemplarvariablen von this
— Einem Objekt, das Parameter einer Methode ist
— Einem Element einer Collection (Container) , welche
Exemplarvariable von this ist
— Einem Objekt, das innerhalb einer Methode erzeugt wurde
e Nicht erlaubt z.B.:

— Ein Objekt soll niemals eine Nachricht zu einem Objekt
senden, dessen Adresse es als Riickgabewert eines
Methodenaufruf mit einem dritten Objekt erhalten hat

00AD Prof. Dr. 346
Stephan Kleuker

Muster: Reines Kunstgebilde

Name: “Reines Kunstgebilde” bzw. “pure fabrication”
Regel: Falls man einer Klasse aufgrund

— naturlicher Gegebenheiten bzw.

— anderer logischer Gegebenheiten

bestimmte Aufgaben Ubertragen will und dadurch das Muster
“hoher Zusammenhalt” verletzt wird, so sollte man einige
Aufgaben in eine eigene Kunstklasse auslagern

e Hintergrund: Dieses dient zur Auflésung eines Konfliktes
zwischen
— naturlicher Modellierung und
— “hohem Zusammenhalt”

0O0AD Prof. Dr. 347
Stephan Kleuker

Beispiel: Reines Kunstgebilde

Bank

vollzieht komplexe Aufgaben
(Prifungen, Schufa-Abfrage usw.)

Prifungsamt

1

>

Bewertung der Klausur

fur Studierende, Methoden uber alle —

HHHHHHHHHHHHHHHHHHH

* 1 0.1 Kredit-
@ Buchendf|——|
wardigkeit
Ein “reines Kunstprodukt”, dieses/
Klausurliste 2—>1 Klausur
Klausur
bewertung

Ergebnisse, wie Test auf Normalverteilung...

OOAD

Prof. Dr.

Stephan Kleuker

348

Muster: Command-Query Separation

Name: “Ausfihrung-Abfrage Trennung” bzw. “Command-Query
Separation (CQS)”

Regel: Die Methode einer Klasse soll eine der Funktionen

— Ausfiihren einer Aktion mit der Nebenwirkung, dass Objekt-/
Klassenvariablen verandert werden (moglichst vom Typ void)

— Ausfuhren einer Anfrage, um Daten ohne Nebenwirkung
zurlickzugeben

erfullen, aber auf keinen Fall beides tun.
,Das Stellen einer Frage sollte nicht die Antwort beeinflussen.”

Hintergrund: Die Schnittstelle einer Klasse sollte mdglichst
Ubersichtlich und verstandlich sein. Insbesondere muss transparent
sein, wie Objekt- und Klassenvariablen verandert werden.

0O0AD Prof. Dr. 349
Stephan Kleuker

Beispiel: Command-Query Separation

HHHHHHHHHHHHHHHHHHH

Beispiel 1: Inkrement

private int x;

public int nextX() {
this.x = this.x + 1;
return this.x; ——
} //Schlecht!

Beispiel 2: Monopoly Wiirfel

private int x;

public int getX() {
return this.x; }

public void incrementX() {
this.x = this.x + 1; } //gut!

private int wert;
public int werfen() {
this.wert=(int)(Math
.random()*6) + 1;
return this.wert;
} //Schlecht!

—

private int wert;
public void werfen() {
this.wert=(int)(Math.random()*6)
+ 1;
}
public int getWert(){

return this.wert; } //gut!

OOAD

Prof. Dr.

350

Stephan Kleuker

Method Chaining (1/3)

e immer sinnvolle Ruckgabe nutzen; wenn wahlbar wird statt
void Objekt selbst zurlick gegeben (this)

e Variante: Rlickgabe eines Objekts gleichen Typs; nutzt z. B.

Referenzen des Ursprungsobjektes
e verstolt klar gegen Command-Query Separation

e Beispiel Integer-Menge
public class Main {

public static void main(String[] args) {
IntMenge tmp = new IntMenge();
tmp = tmp.hinzu(1, 21, 11, 41, 31, 1)

.kleinerAls(41)
.groesserAls(11);
System.out.println(tmp);
}
OOAgl Prof. Dr.

Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

[21, 31]

351

Method Chaining (2/3) e

public class IntMenge {
private Set<Integer> menge = new HashSet<>();

public IntMenge(){ }

public IntMenge hinzu(int... wert){
for(int w:wert){
this.menge.add(w);
}

return this; // hier sieht man Chaining

}

public IntMenge kleinerAls(int grenze){
IntMenge ergebnis = new IntMenge();
for(int w:this.menge){
if(w < grenze){

ergebnis.hinzu(w);
}
}
return ergebnis;
00AD } Prof. Dr. 352

Stephan Kleuker

Method Chaining (3/3)

public IntMenge groesserAls(int grenze){
IntMenge ergebnis = new IntMenge();
for(int w: this.menge){
if(w > grenze){
ergebnis.hinzu(w);
}
}

return ergebnis;

}

public boolean beinhaltet(int wert){
return this.menge.contains(wert);

}

@Override
public String toString(){
return this.menge.toString();

}

00AD Prof. Dr. 353
Stephan Kleuker

Beispiel: Hilfsklasse Objekterzeugung (1/4)

e Beispielnutzung

Mitarbeitend tmp = MitarbeitendBuilder
.createBuilder()
.vorname("Murat")
.nachname("Meier")
.addFachgebiet(Fachgebiet.C)
.addFachgebiet(Fachgebiet.JAVA)
.build();

e generell zur Erzeugung von Objekten nutzbar
e durch Fluent-Programming (Method Chaining) besser lesbar
e Methoden einfach erganzbar

00AD Prof. Dr. 354
Stephan Kleuker

[o o ° < »
Beispiel: Hilfsklasse Objekterzeugung (2/4)
Mitarbeitend
- idGenerator:int

e - id:int

| - vorname:String

| - nachname:String

MitarbeitendBuilder + Mitarbeitend()
- idiint + addFachgebiet(Fachgebiet) -fachgebiete
- vorname:String + removeFachgebiet(Fachgebiet) * {unique}
- nachname:String : 32:Z?§:hng{ebiet(Fachgebiet):boolean

i
- MitarbeitendBuilder() + qetV Stri «enum»
+ createBuilder():MitarbeitendBuilder W tcsliied e IR Fachgebiet
+ id(int):MitarbgitendBuildgr . + getFachgebiete():Set<Fachgebiet> ANALYSE
+ vorname(String):MitarbeitendBuilder + setld(int) DESIGN
+ nachname(String):MitarbeitendBuilder + setVorname(String) JAVA
+ addFachgebiet(Fachgebiet):MitarbeitendBuilder + setNachname(String) C
+ build():Mitarbeitend + setFachgebiete(Set<Fachgebiet>) TEST
N
* {unigue}
-fachgebiete
00AD Prof. Dr. 355

Stephan Kleuker

Beispiel: Hilfsklasse Objekterzeugung (3/4) o e

public class MitarbeitendBuilder {

private int id;

private String vorname = "Eva"; //Default-Wert
private String nachname = "Mustermann";

private Set<Fachgebiet> fachgebiete = new HashSet<>();

public MitarbeitendBuilder() {}

public static MitarbeitendBuilder createBuilder(){
return new MitarbeitendBuilder();

}

public MitarbeitendBuilder vorname(String vorname) ({
this.vorname = vorname;
return this;

}

public MitarbeitendBuilder nachname(String nachname) {
this.nachname = nachname;

return this;

OOA} Prof. Dr. 356
Stephan Kleuker

Beispiel: Hilfsklasse Objekterzeugung (4/4)

HHHHHHHHHHHHHHHHHH

public MitarbeitendBuilder id(int id){
this.id = id;
return this;

}

public MitarbeitendBuilder addFachgebiet(Fachgebiet f){

this.fachgebiete.add(f);
return this;

}

public Mitarbeitend build() {
Mitarbeitend erg = new Mitarbeitend();
erg.setId(this.id);
erg.setVorname(this.vorname);
erg.setNachname(this.nachname);
erg.setFachgebiete(this.fachgebiete);
return erg;

?OAD Prof. Dr.
Stephan Kleuker

357

Erinnerung: clone(), Erzeugung echter Kopien (1/4)

Video

e Java arbeitete mit Referenzen, Default-Implementierung von

clone() liefert nur flache Kopien

HHHHHHHHHHHHHHHHHHH

e Interface Cloneable implementieren und clone() Giberschreiben

Linie

+ Linie(Punkt. Punkt)
+ flacheKopie(): Linie

Punkt
-start (|- x:int
1 2 - yint
-ende |+ Punkt(int, int)

+ clone(): Linie

1

«interface»
Cloneable

clone():Object

2+ clone(): Punkt

e Erinnerung: Strings sind immutable (immer neues Objekt)

OOAD

Prof. Dr.
Stephan Kleuker

358

https://youtu.be/-iqOX1c_U6g

Erinnerung: clone(), Erzeugung echter Kopien (2/4) |..........

e in Linie:
public Linie flacheKopie(){
return new Linie(this.start, this.ende);

}

public static void main(String[] args) {
Linie 11 = new Linie(new Punkt(1,2), new Punkt(3,4));
System.out.println(11);
Linie 12 = 1l1.flacheKopie();
System.out.println("11 == 12 : " + (11 == 12));
12.getStart().setX(42);
System.out.println(11);
System.out.println(12);

} Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
11 == 12 : false

Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}

00AD Prof. Dr. 359
Stephan Kleuker

Erinnerung: clone(), Erzeugung echter Kopien (3/4) |..........

e in Punkt:
public class Punkt implements Cloneable{ ..

@Override
public Punkt clone() { // darf Punkt statt Object stehen
return new Punkt(this.x, this.y);

}

e in Linie:
public class Linie implements Cloneable{ ..

@Override
public Linie clone() {
return new Linie(this.start.clone(), this.ende.clone());

}

0O0AD Prof. Dr. 360
Stephan Kleuker

Erinnerung: clone(), Erzeugung echter Kopien (4/4)

public static void main(String[] args) {

HHHHHHHHHHHHHHHHHHH

Linie 11 = new Linie(new Punkt(1,2), new Punkt(3,4));

System.out.println(1ll);

Linie 12 = 11.clone();

System.out.println("11 == 12 : " + (11 == 12));
12.getStart().setX(42);

System.out.println(11);

System.out.println(12);

11 == 12 : false

Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}

Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}

e Erinnerung an Praktikumsaufgabe: Ansatz funktioniert nur, wenn
keine identischen Objektreferenzen mehrfach im zu clonenden

Objekt enthalten

0OAD Prof. Dr.
Stephan Kleuker

361

Kombination von Pattern: Beispiel Redux

Skizze O Skizze 1 Skizze 2 Skizze 3 Skizze 4

Objekte arbeiten typischerweise mit Referenzen (Zeigern) zur
Verknupfung von Objekten, das ist schnell, kann aber undurchsichtig
werden

Beispiel: Oberflachen, mit denen verschiedene Objekte der
Geschaftsebene bearbeitet werden

Ansatz: zentraler State, der alle relevanten Informationen halt
Ansatz: Veranderung des States nur Uber zentralen Store
Ansatz: es entstehen bei Aktionen immer neue State-Objekte

ursprunglich fir JavaScript entwickelt (basierend auf Flux)
Ansatz auch Grundlage von Reactive Programming

Folien motiviert durch: https://www.lestard.eu/2018/implement-your-own-
redux-in-java/

00AD Prof. Dr. 362
Stephan Kleuker

https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://youtu.be/sDMPcTh5aa8
https://youtu.be/AcrXcnNCMMU
https://youtu.be/H_AMc-NwzY4
https://youtu.be/j3TNIPM9ONI
https://youtu.be/iETttIjEoVg

LRedux — Konzept Version 0 (1/2)

8.4

"Appll

|
l

: «generates»

ﬁ/Action

N

~

™

-currentState

HHHHHHHHHHHHHHHHHHH

] >l State
S details
+ clone():State
+ dispatch(Action)
Reducer
-reducer
1 >+ reduce(State, Action):State

e Nutzung (,App“) erzeugt Action-Objekt a, beinhaltet, was gemacht

werden soll

e Nutzung ruft dispatch beim Store mit Action a auf
e Store ruft Reducer mit noch aktuellem State currentState (old) und

Action a auf

e Reducer berechnet neuen State neu aus currentState (old) und a

e Store: currentState = neu

OOAD

Prof. Dr.
Stephan Kleuker

363

Redux — Konzept Version 0 (2/2) o o
.Stare Reducer old: State
| new . |a:Action | ' |
| | |
:< _____ — | | |
, | I : |
di | |
| lspatclh(a) > | |
| , | reduce > ,
: | : Ill f(old,a) | |
| "holelnfos" | |
|
: b l
' | : | "bearbeite" |
' ' "; "
: ! ' < o8 —tl State aktualisierenlj
, T u : |~ clong() P!
- |
| 2 i Iﬁ | | L new > neu State
| ' R | < ' |
| | AEl. . === e e
: | W ss== | | |
e s | | | i
00AD Prof. Dr. 364

Stephan Kleuker

Redux — Konzept Version 1 (1/12)

Video

offen, wie bekommen Interessierte, z. B. GUI-Komponenten
Anderungen mit (Rickgabe neuen Zustands wire denkbar)

< »

HOCHSCHULE OSNABRUCK

Losung: Store bietet Observer-Observable-Losung; d. h. Interessierte
an (ggfls. bestimmten) Zustandsanderungen konnen sich anmelden
(hier fasst Store konkreten und abstrakten Observable zusammen)

-currentState
uAppn 1 "d taslta"te
~ etails
[N Store
| N + clone():State
| «generates» - -
\:/ + dispatch(Action)
: + subscribe(Subscriber)
Action + notifySubscribers()
; Reducer
,/ -reducer
5 1 - | + reduce(State, Action):State
/ -subscribers
/7 *
) /', «interface»
Iinteressent"| _ > Subsecriber
+ onChange(State)
OOAD Prof. Dr.

Stephan Kleuker

365

https://youtu.be/_D7XSzoMuuc

Redux — Konzept Version 1 (2/12) e o
Store .Reducer old: State
| | |
: Nnew > a:Action | | '
l | | |
e | . .
di | | |
, |spatclh(a) > ' '
| | | ___reduce p ,
: | | (oida) " |
| "holglnfos” | |
| < "info_a" ; '
| [ty s > |
| | : | "bearbeite"y |
| | "; "
: | ! - 0Tg. S -j State aldualisierenb‘
: I "> clone() ! :
dld = Neu, I l i P new .
ipformiere alle Stibscriber,, | | | p| DeuShate
schicke neu.clong() . IR =
i | 4< ------ ' | |
€—————— S o | | | |
00AD Prof. Dr. 366

Stephan Kleuker

Redux — Konzept Version 1 (3/12)

< »

HOCHSCHULE OSNABRUCK

e Beispiel: Bearbeitung einer Taskliste
e ,App“und, Interessent” sind Konsole (TextlO)
e Fachklassen sehen wie folgt aus: (entspricht ,,details)

State

+ State()

- State(TaskList)

+ getTaskList(): TaskList
+ add(String, String)

+ delete(id)

+ clone(): State

-taskList

TaskList

1

+TaskList()
-TaskList(Map<Integer, Task>)
+ testdaten(): TaskList

+ add(String,String)

+ delete(int)

+ clone(): TaskList

-tasks

Task

1

-idcountint = 1

+id:int

+ text:String

+ responsible:String

+ finished:boolean = false

+Task(String, String)
+ clone(): Task

e Businessklassen befinden sich im (oder , hinter” dem) State
e State kann auch als Model angesehen werden

OOAD

Prof. Dr.
Stephan Kleuker

367

Redux — Konzept Version 1 (4/12)

public class Action {
// generell sollte auf String-Parameter, die auch andere
// Werte kodieren sollen, aus Typsicherheitsgruenden
// verzichtet werden
private List<String> parameter;

public Action(List<String> parameter) {
this.parameter = parameter;

}

public Action(String... parl){
this(Arrays.asList(parl));

}

public List<String> getParameter() {
return this.parameter;

}

$oAD Prof. Dr. 368
Stephan Kleuker

Redux — Konzept Version 1 (5/12) — App (1/2)

public class TextIO {
private Store store = new Store(new State(), new Reducer());

public TextIO() {
this.store.subscribe(new Subscriber(){
@Override
public void onChange(State s){
System.out.println(s.getTaskList());

} Ds
}

public void dialog() {
int eingabe = -1;
while (eingabe != 0) {
System.out.print(""
+ "(0) beenden\n"
+ "(1) Task hinzu\n"
)5
eingabe = Eingabe.leseInt();

. Prof. Dr. 369
00AD // naechste Folie Stephan Kleuker

Redux — Konzept Version 1 (6/12) — App (2/2)

switch (eingabe) {
case 1: {
this.newTask();
break;

}
}
}
}

private void newTask() {

Systenm.
String
System.
String
Action

out.print("neue Aufgabe: ");

text = Eingabe.leseString();
out.print("Bearbeitende Person: ");
responsible = Eingabe.leseString();
action = new Action(text, responsible);

this.store.dispatch(action);

OOAD

Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

370

Redux — Konzept Version 1 (7/12)

public class Store {

private State currentState;
private Reducer reducer;
private List<Subscriber> subscribers = new ArrayList<>();

public Store(State initialState, Reducer reducer) {
this.currentState = initialState;
this.reducer = reducer;

}

public State getState() {
return this.currentState;

}

public void dispatch(Action action) {
this.currentState = this.reducer.reduce(this.currentState
, action);
this.notifySubscribers();

}

0O0AD Prof. Dr. 371
Stephan Kleuker

Redux — Konzept Version 1 (8/12) ... -

private void notifySubscribers() {
for (Subscriber s: this.subscribers){
s.onChange(this.currentState.clone());

}
}

public void subscribe(Subscriber subscriber) {
this.subscribers.add(subscriber);
subscriber.onChange(this.currentState.clone());

}
}

public interface Subscriber {
void onChange(State state);

}

OO0AD Prof. Dr. 372
Stephan Kleuker

Redux — Konzept Version 1 (9/12)

public class State implements Cloneable{
private TaskList taskList;

public State(){
this.taskList = new TaskList();

}

private State(TaskList taskList) {
this.taskList = taskList;

}

public TaskList getTaskList() {
return this.taskList;

}

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

373

Redux — Konzept Version 1 (10/12) -

HHHHHHHHHHHHHHHHHHH

public void add(String text, String responsible){
this.taskList.add(text, responsible);

}

@Override

public State clone() {// nur fuer interne Tests, sonst clone()
State result = new State(this.taskList.clone());
return result;
}
}

0O0AD Prof. Dr. 374
Stephan Kleuker

Redux — Konzept Version 1 (11/12) ... -

public class Reducer {

public State reduce(State state, Action action) {
if(action.getParameter().size() < 2){
throw new IllegalArgumentException(
"Hinzufuegen benoetigt zwei Parameter");
}
state.add(action.getParameter().get(09),
action.getParameter().get(1));
return state.clone();

}
}

0O0AD Prof. Dr. 375
Stephan Kleuker

Redux — Konzept Version 1 (12/12)

(0) beenden

(1) Task hinzu

1

neue Aufgabe: Redux lernen

Bearbeitende Person: ich

Task{id=1, text=Redux lernen, responsible=ich, finished=false}

(0) beenden

(1) Task hinzu

1

neue Aufgabe: Redux coden

Bearbeitende Person: mein Kumpel

Task{id=1, text=Redux lernen, responsible=ich, finished=false}

Task{id=4, text=Redux coden, responsible=mein Kumpel,
finished=false}

Prof. Dr. 376
Stephan Kleuker

OOAD

Redux — Konzept Version 2 (1/11) = .. -
Video
e e e e = "App"

Flexibilisierung des Ansatzes oo i
«generates»

e mehr Actions: Beispiel
Delete-Operation

«abstract»
Action

e ursprungliche Action wird zur
AddAction

e Interface oder abstrakte
Klasse fur Gemeinsamkeit

parameter.List<String>
+ Action(List<String>)

JAN

e offen: sinnvoller Umgang mit

Parametern (?trlngs Immer L->| AddACton DelateAction
nutzbar, fast immer schwach) | it

e hier: individuelle Parameter +DeleteAction(int)
00AD Prof. Dr. 377

Stephan Kleuker

https://youtu.be/KkyLfsaReZQ

Redux — Konzept Version 2 (2/11) = | -

public class DeleteAction extends Action{
private int deleteld;

public DeleteAction(int id){
this.deleteld = id;

}

public int getDeleteId() ({
return deleteld;

}

@Override
public String toString() {
return "DeleteAction{" + "deleteld=" + deleteld + '}';

}
}

0O0AD Prof. Dr. 378
Stephan Kleuker

Redux — Konzept Version 2 (3/11)

e in TextlO

case 2: {
this.deleteTask();
break;

private void deleteTask() {
System.out.print("welche Id: ");
int id = Eingabe.leselInt();
Action action = new DeleteAction(id);
this.store.dispatch(action);

}

0OAD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

379

Redux — Konzept Version 2 (4/11) = |

public class Reducer {
public State reduce(State state, Action action) {

this.reduceIntern(state, action);
return state.clone();

}

private void reducelIntern(State state, Action action) {

if (action instanceof AddAction) {

state.add(action.getParameter().get(09),
action.getParameter().get(1));

return; // Alternative fiir jede Action

}

if (action instanceof DeleteAction) {
state.delete(((DeleteAction) action).getDeleteId());
return; // State bekommt delete(int)-Methode

}

throw new IllegalArgumentException(
"Action " + action + " nicht unterstuetzt");

Prof. Dr. 380

OOAD
Stephan Kleuker

< »

Redux — Konzept Version 2 (5/11)

Flexibilisierung des Ansatzes

e Store-Varianten, die zusatzliche Aufgaben ubernehmen

e Beispiel: Messe Zeit der Methodenausfiihrung

e Ansatz: Decorator-Pattern, so Store-Varianten verknupfbar

«interface» «abstract» TimerStore
Storelnterface]-———- AbstractDecoratorStore | - start:int
+ dispatch(Action) + dispatch(Action)
+ subscribe(Subscriber) + dispatch(Action)
+ notifySubscribers() & -Storé | 4+ subscribe(Subscriber)
+ getState():State 1 + notifySubscribers()
/:\ |A + getState():State
| |
| T | Store
: -reducer
| \I/1 + dispatch(Action)
: + subscribe(Subscriber)
| Reducer + notifySubscribers()
| + getState():State -currentState
| 1
00AD Prof. Dr. 381

Stephan Kleuker

Redux — Konzept Version 2 (6/11)

public interface Storelnterface {

public void dispatch(Action action);

public State getState(); // !!!! (1)

public void subscribe(Subscriber subscriber);
public void notifySubscribers();

e ursprungliche Store-Klasse bleibt erhalten, realisiert Interface

e (1) getState()-Methode darf nur zum Testen genutzt werden,
nur weil jemand Store kennt, ist der Aufruf noch lange nicht
erlaubt

e (1) falls getState() fur alle nutzbar sein soll, muss der State bei
Riickgabe gecloned werden [macht Testen schwieriger]

0O0AD Prof. Dr. 382
Stephan Kleuker

Redux — Konzept Version 2 (7/11)

public abstract class AbstractDecoratorStore
implements StoreInterface {

protected StorelInterface store;

public AbstractDecoratorStore(StoreInterface store) {
this.store = Objects.requireNonNull(store);

}

@Override

public State getState() { // nur fuer Testzwecke
return this.store.getState();

}

0O0AD Prof. Dr. 383
Stephan Kleuker

Redux — Konzept Version 2 (8/11) -

HHHHHHHHHHHHHHHHHHH

@Override
public void dispatch(Action action) {
this.store.dispatch(action);

}

@Override
public void notifySubscribers() {
this.store.notifySubscribers();

}

@Override

public void subscribe(Subscriber subscriber) {
this.store.subscribe(subscriber);

}
}

00AD Prof. Dr. 384
Stephan Kleuker

Redux — Konzept Version 2 (9/11)

public class TimerStore extends AbstractDecoratorStore {
private long start;

public TimerStore(StoreInterface store) {
super(store);

}

@Override
public void dispatch(Action action) {
start = System.nanoTime();
super.store.dispatch(action);
System.out.println("Dauer von " + action
+ ": " + (System.nanoTime() - start));

00AD Prof. Dr. 385
Stephan Kleuker

Redux — Konzept Version 2 (10/11)

e Nutzung in TextlO
private StorelInterface store = new TimerStore(
new Store(new State(), new Reducer())

);

(0) beenden

(1) Task hinzu

(2) Task loeschen

1

neue Aufgabe: Flexibilisieren
Bearbeitende Person: ich
Task{id=1, text=Flexibilisieren, responsible=ich, finished=false

Dauer von AddAction{parameter=[Flexibilisieren, ich]}: 8505520
(0) beenden

(1) Task hinzu

(2) Task loeschen

00AD Prof. Dr. 386
Stephan Kleuker

Redux — Konzept Version 2 (11/11)

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY OF APPLIED SCIENCES

e ————— — — —]

llAppll

«generates»

«interface»
Storelnterface <]-———

+ dispatch(Action)
+ subscribe(Subscriber)

«abstract»
AbstractDecoratorStore

TimerStore
- start:int

|

+ dispatch(Action)

+ subscribe(Subscriber)
+ notifySubscribers()

+ getState():State

Store

AddAction

OOAD

DeleteAction

|

: + notifySubscribers() | - -store
| + getState():State 1

| i

| «abstract» l

| Action [

| # parameterList<String> R
| + Action(List<String>) ;fec’ucef

|

: ZP Reducer

|

- idiint

+ reduce(State, Action):State

+ dispatch(Action)
+ subscribe(Subscriber)
+ notifySubscribers()

+ dispatch(Action)

+ getState():State

+DeleteAction(int)

_______________.>

'Interessent”

_______________ > Subscriber

Prof. Dr.
Stephan Kleuker

-subscribers

*

-currentState
1

State

«interface»

"details”

+ clone():State

+ onChange(State)

387

< »

Redux — Konzept Version 3 (1/4)

Video
. . «enum»

Systematisierung: Erzeugung von At Jg—————] "App”
Actions bindeln o R 7 i

DELETE | |
e hier korrekte Form garantieren - A4

ActionFactory
e konkrete Factory e
«generl es» : :

° Aufzéhlungswert pro Action- _ _ _ | *create(Art. Object[]): Action

«generq'atés»

Art ist Moglichkeit, geht auch
mit int-Parameter

«abstract»
Action

parameter:List<String>
+ Action(List<String>)

JAN

L _>I AddAction DeleteAction

e Tt APt et :>-4djnt
+DeleteAction(int)

OO0AD Prof. Dr. 388
Stephan Kleuker

https://youtu.be/dhq36cjmBRI

Redux — Konzept Version3 (2/4) = |

public class ActionFactory {

// auch mehrere create-Methoden denkbar
public static Action create(Art command, Object... value) {
try {
switch (command) {
case ADD:

List<String> tmp = new ArrayList<>();

for(Object o:value){tmp.add(o.toString());}

if (tmp.size() < 2) {

throw new IllegalArgumentException(
"Hinzufuegen benoetigt zwei Parameter");
}

return new AddAction(tmp);
case DELETE:
if (value.length == 0) {
throw new IllegalArgumentException(
"DELETE benoetigt Parameter");
}

return new DeleteAction((Integer) value[©0]);

0O0AD Prof. Dr. 389
Stephan Kleuker

Redux — Konzept Version3(3/4) = | -

default:
throw new IllegalArgumentException("Action("
+ command + "," + Arrays.asList(value)
+ ") existiert nicht");
}
} catch (ClassCastException e) {
throw new IllegalArgumentException("Action("

+ command + "," + Arrays.asList(value)
+ ") hat falschen Parametertyp :" + e);

00AD Prof. Dr. 390
Stephan Kleuker

Redux — Konzept Version 3 (4/4)

e in TextlO:
private void deleteTask() {
System.out.print("welche Id: ");
int id = Eingabe.leseInt();
Action action = ActionFactory.create(Art.DELETE, id);
this.store.dispatch(action);

}

private void newTask() {
System.out.print("neue Aufgabe: ");
String text = Eingabe.leseString();
System.out.print("Bearbeitende Person: ");
String responsible = Eingabe.leseString();
Action action = ActionFactory.create(Art.ADD

, text, responsible);

this.store.dispatch(action);

0O0AD Prof. Dr. 391
Stephan Kleuker

Redux — Fazit

e fir kleine Beispiele recht aufwandig
e sehr leicht erweiterbar, gibt feste Stellen an denen erganzt wird

e Funktionalitat aber auf einige Klassen verteilt; gefahrlich, wenn
man bei Anderungen eine vergisst

e clone() des State-Objekts kann viel Zeit kosten
— State eher fir Oberflachen-Daten als gesamte Daten
— pragmatisch tberlegen, ob clone() fir alles benotigt wird

e gibt kein direktes Ergebnis flr Aufrufer; ggfls. weiteres Publish-
Subscribe fliir Antworten

e sehr gut fir asynchrone Systeme (Action abschicken und
weitermachen, anderer Thread erhalt neue Zustande und wertet
sie aus)

00AD Prof. Dr. 392
Stephan Kleuker

LBeschreibung der Pattern = . -
8.5

Name: Abstract Factory

Patterngruppe: Objekterzeugung

Kurzbeschreibung: Client kann mit einer AbstractFactory zu einer abstrakten
Klasse passende Exemplare aus einem Satz konkreter Implementierungen fiir
bestimmtes Produkt erzeugen, kennt den konkreten Typ des erzeugten
Exemplars nicht

Kontext: viele verschiedene gleichartige, aber unterscheidbare
Objekte sollen verwaltet werden

Problem: Klasse soll verschiedene Objekte bearbeiten, bendtigt
aber nur deren gemeinsame Eigenschaften

L6osung: Einfihrung von zwei abstrakten Klassen, die zum Einen
Objekterzeugung, zum Anderen Objektzugriff erlauben, Client
muss nur diese Klassen kennen

Einsatzgebiete: ... | Varianten: ... Struktur: s.o. Beispiele:

00AD Prof. Dr. 393
Stephan Kleuker

GoF-Pattern Ubersicht (nicht auswendig lernen)

HHHHHHHHHHHHHHHHHHH

Aufgabenbereich

OOAD

Stephan Kleuker

Erzeugung Struktur Verhalten
Q Factory Adapter Interpreter
;—E Template
Abstract Adapter Command
Factory
% Builder Bridge Observer
g Prototype Decorator Visitor
g Ei Singleton Facade Memento
- o Composite Strategy
Proxy Mediator
Flyweight State
Chain of
Responsibility
Prof. Dr. 394

Pattern in der UML

-

s
!

{ | + addXModellistener(x:Modellistener):void | 'j
v | + fireXModelChanged():void
‘\: + getWert():int

| changeValue(delta:int):void A
— T g — o ————————— —
i s S EE-_ ﬁﬁﬁﬁﬁﬁﬁﬁ -—
1| -xmodel AN
% ' P
\Subjal-d ..- e
At
XController AN ! \
N !
+ XController{xmodel:XModel) R N
+ plus()-void ' Observable .
+ minus():void S ==

«Interface»
XModellListener

+ xModelChanged():void

S
I...lli'l""l--.._____.,.—""

#

-xmodel J_*' Beaobachter

-

+ XView(x: X Model)
+ xModelChanged():void

L

—-—

—_

Ty, = T
Observer ™ konkreter B

el
— e

eobachter

e

-

-

< »

HOCHSCHULE OSNABRUCK

Pattern-Name im gestrichelten Kreis, verbunden mit eingekreisten
Klassen, verbunden mit Pattern und Benennung der Rollen

0O0AD Prof. Dr.
Stephan Kleuker

395

Kritische Betrachtung von Pattern s

e Pattern flr Personen mit wenig Programmiererfahrung
wenig geeignet, man muss erste Erfahrungen haben, um
von Erfahrungen anderer Personen zu profitieren

e Uberlagernde Pattern schwer pflegbar, spater in
Implementierungen teilweise schwer erkennbar

Pattern finden Einzug in Bibliotheken, Beispiel: Event-
Handling in Java ist ,Observer-Pattern®, und
Architekturen, Beispiel: MQTT (auch Obs-Obs)

e Generell sind Pattern ein wichtiger Teilschritt zum
ingenieurmaligen SW-Engineering

OOO O 6

e Gute Programmier-Aufgabe: Entwickeln Sie kleine
Beispiele zu allen GoF-Pattern !!!

00AD Prof. Dr. 396
Stephan Kleuker

LPatternorientierte Konzepte in der Programmierung »
8.5 Video

e Functional Interfaces / Lambda Ausdriicke

e QOptional

e Streams in Java

e Dependency Injection

e Services in Java Modulen

e Kombination aus Factories und Annotationen

OO0AD Prof. Dr. 397
Stephan Kleuker

https://youtu.be/TuMNmF9Yui4

Java 8 — Functional Interfaces (1/3) -

HHHHHHHHHHHHHHHHHHH

e Ansatz: Funktionen als Parameter Ubergeben

e Vereinfachung fir Interfaces, die genau eine Methode enthalten

(auch SAM-Types fir Single Abstract Method, selber mit
@Functionallnterface)

@FunctionalInterface // Interface mit genau einer Methode
public interface Ausgabe {

public void ausgeben(String s);

}

public class AusgabeImpl implements Ausgabe { // Standard
@Override

public void ausgeben(String s) {

System.out.println("Impl: " + s);

}
}

0O0AD Prof. Dr.
Stephan Kleuker

398

Java 8 — Functional Interfaces (2/3) — mit Lambda

public class Main {

public static void main(String[] args) {

OOAD

Ausgabe impl = new AusgabeImpl();
String text = "Text";
impl.ausgeben(text); // Impl: Text

Ausgabe an2 = new Ausgabe(){
@Override
public void ausgeben(String s) {
System.out.println("Ano: "+s);

}
}s
an2.ausgeben(text); // Ano: Text

HHHHHHHHHHHHHHHHHHH

Ausgabe an3 = s -> System.out.println("Lambda: "+s);

an3.ausgeben(text); // Lambda: Text

Prof. Dr.
Stephan Kleuker

399

Java 8 — Functional Interfaces (3/3) — mit Lambda

}
}

Ausgabe an4 = System.out::println;
an4.ausgeben(text); // Text

Ausgabe an5 = s -> {
System.out.println("Lambda: "+s);
System.out.println("noch ne Zeile");

}s5

an5.ausgeben(text); // Lambda: Text

// noch ne Zeile

e Lambda-Ausdriicke beschreiben Funktionen
(Parameterliste) -> {Ausdruck bzw. Programmanweisungen}

e Spezifikation: JSR 335: Lambda Expressions for the JavaTM

HHHHHHHHHHHHHHHHHHH

Programming Language, https://jcp.org/en/jsr/detail?id=335

OOAD

Prof. Dr.
Stephan Kleuker

400

https://jcp.org/en/jsr/detail?id=335

Optional (1/5) o e

Video
e Grundproblem der Programmierung sind undefinierte
Referenzen, also NullPointerExceptions in Java

e immer wenn Objekt Ergebnis sein kann, muss programmierende
Person damit rechnen einen Null-Wert zu erhalten

— d. h. man muss immer darauf prufen

— oder Angebot (Schnittstelle) garantiert, dass es kein Null-Wert
ist (kann man trauen?)

e bequeme Unart, wenn Ergebnis irgendwie nicht berechenbar, z.
B. Parameter nicht ok, ist Ergebnis Null-Wert, als AbklUrzung fir
Jirgendwie ist der Aufruf gescheitert”

e Losung: Ergebnis wird als Optional (generischer Typ)
gekennzeichnet; Nutzung weill damit, dass Ergebnis Null-Wert

sein kann und muss reagieren

00AD Prof. Dr. 401
Stephan Kleuker

https://youtu.be/0hnxraAnjms

Optional (2/5) — Problem mit null (1/2)

public class Einkaufsliste {
private Map<String,Integer> produkte;

public Einkaufsliste() {
this.produkte = new HashMap<>();

}

public void hinzu(String prod, int anzahl) {
this.produkte
.put(prod, this.produkte.getOrDefault(prod, 0)
+ anzahl);

}

public Integer anzahlVon(String prod) {
return this.produkte.get(prod);

}

0O0AD Prof. Dr. 402
Stephan Kleuker

Optional (3/5) — Problem mit null (2/2)

public static void main@(String[] args) {
Einkaufsliste ek = new Einkaufsliste();
ek.hinzu("Bier", 3);
ek.hinzu("Wasabi", 5);
ek.hinzu("Bier", 6);
System.out.println("ek: " + ek);

System.out.println("Bier " + ek.anzahlVon("Bier"));
System.out.println("Beer " + ek.anzahlVon("Beer"));

int moreBeer = ek.anzahlVon("Beer") + 1;

}

HHHHHHHHHHHHHHHHHHH

Bier 9
Beer null

ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]

Exception in thread "main" java.lang.NullPointerException

0O0AD Prof. Dr.
Stephan Kleuker

403

Optional (4/5) — Probleml6sung (1/2)

e Variante in Einkaufsliste

public Optional<Integer> anzahl(String prod) {
return Optional.ofNullable(this.produkte.get(prod));

// alternativ (zeigt weitere Optional.Erzeuger):
// if(this.anzahlVon(prod) == null) {
// return Optional.empty();

// }
// return Optional.of(this.anzahlVon(prod));

e QOptionalin java.util

0O0AD Prof. Dr. 404
Stephan Kleuker

Optional (5/5) — Problemlésung (2/2) ... »

public static void main(String[] args) {
Einkaufsliste ek = new Einkaufsliste();
ek.hinzu("Bier", 3);
ek.hinzu("Wasabi", 5);
ek.hinzu("Bier", 6);
System.out.println("ek: " + ek);
System.out.println("Bier " + ek.anzahl("Bier").orElse(9));
System.out.println("Beer " + ek.anzahl("Beer").orElse(9));
int moreBeer = ek.anzahl("Beer").orElse(0) + 1;
ek.anzahl("Bier")
.ifPresent(b -> System.out.println(b + " mal da"));
if (lek.anzahl("Beer").isPresent()) {
System.out.println("no beer");

} } ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]
Bier 9
Beer ©
9 mal da

0O0AD no beer‘ Prof. Dr. 405

Stephan Kleuker

Streams ab Java 8

Video

e Streams ab Java 8 sind gutes Beispiel zum Method Chaining (hier
genauer Fluent Programming)

e allerdings werden Methoden pro Stream-Objekt abgearbeitet

e Sammlungen werden als Streams (Folgen) von Objektreferenzen
angesehen

e Viele Stream-Methoden liefern wieder ein Stream-Objekt als
Ergebnis

e Beispiele: Filtermethoden, Umwandlungen
e Streams kurzlebig, nur einmal nutzbar (dann wieder erstellbar)

e Hier nur kurzes Konzept (gibt weitere Methoden, zusatzliche
Stream-Klassen, ...)

e Hier auch weitere Nutzung von Lambda-Ausdriicken

00AD Prof. Dr. 406
Stephan Kleuker

https://youtu.be/2H5BcSCz84k

Streams (1/14): POJO-Klasse (1/2) = | »

public class Studierend {
private int matnr;
private String name;

public Studierend(){ // Default-Konstruktor
}

public Studierend(int matnr, String name) {
this.matnr = matnr;
this.name = name;

}

public int getMatnr() {
return this.matnr;

}

OO0AD Prof. Dr. 407
Stephan Kleuker

Streams (2/14): POJO-Klasse (2/2) = | »

public void setMatnr(int matnr) {
this.matnr = matnr;

}

public String getName() {
return this.name;

}

public void setName(String name) {
this.name = name;

}

@Override
public String toString(){
return this.name + " (" + this.matnr +")";

}
} // sinnvoll: equals und hashCode

OO0AD Prof. Dr. 408
Stephan Kleuker

Streams (3/14): Ausfiihrungsrahmen .. .

import java.util.ArraylList;
import java.util.Arrays;

import java.util.List;

import java.util.stream.Stream;

import entity.Studierend;
public class Main {
private List<Studierend> studierende = new ArrayList<>();

public static void main(String[] args) {
Main m = new Main();
m.generate(10);
m.showl(); // hier zu untersuchende Methode

}

Z. B.: http:/lwww.angelikalanger.com/Articles/EffectiveJaval75.Java8.Fundamental-
Stream-Operations/75.Java8.Fundamental-Stream-Operations.html

0O0AD Prof. Dr. 409
Stephan Kleuker

http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html
http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html

Streams (4/14): Erzeugung und einfache Nutzung

public void generate(int anzahl){
for(int 1 = 0; 1 < anzahl; i = i + 2){

HHHHHHHHHHHHHHHHHHH

this.studierende.add(new Studierend(i, "Ute"+1));
this.studierende.add(new Studierend(i+1, "Udo"+i));

UteoO
Udo©o
Ute2
Udo2
Uted
Udo4
Uteb
Udo6
Ute8
Udo8

(@)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

}
}
public void showl(){
this.studierende
.forEach(s -> System.out.println(s));
}
// Hinweis: ist aequivalent zu
// this.studierende
// .stream()
// .forEach(s -> System.out.println(s));
00AD Prof. Dr.

Stephan Kleuker

410

Streams (5/14): Lambda - Beispiele

public void lambda(){

this.studierende

.forEach((Studierend s) -> {System.out.println(s);});
// wenn Typen eindeutig, dann weglassen
this.studierende.forEach((s) -> {System.out.println(s);});
// nur ein Parameter, dann keine Klammern
this.studierende.forEach(s -> {System.out.println(s);});
// nur ein Ausdruck oder eine Zeile, dann keine Klammern
this.studierende.forEach(s -> System.out.println(s));
// wenn Objekt s Parameter der einzige aufgerufenen Methode
this.studierende.forEach(System.out: :println);

OO0AD Prof. Dr. 411
Stephan Kleuker

Streams (6/14): Moglichkeit zur Parallelisierung

HHHHHHHHHHHHHHHHHHH

public void show2(){ // Parallelisierung
this.studierende
.parallelStream()
.forEach(s -> System.out.println(s));

// Hinweis: jede Collection in Stream

// verwandelbar, z. B.

// int[] arr= {9,7,3,1};

// Arrays.stream(arr)

// .forEach(i -> System.out.println(i));

0O0AD Prof. Dr.
Stephan Kleuker

Uteb
Udo4
Udo6
UteO
Ute2
Udo©o
Udo2
Uted
Ute8
Udo8

(6)
(5)
(7)
(@)
(2)
(1)
(3)
(4)
(8)
(9)

412

Streams (7/14): Filterung

HHHHHHHHHHHHHHHHHHH

public void show3(){
this.studierende
.stream()
.filter(s -> s.getMatnr()% 3 == 0)
.filter(s -> s.getMatnr()% 2 == 1)
.forEach(s -> System.out.println(s));
}

// generell jede Boolesche Methode
// zum Filtern nutzbar

OO0AD Prof. Dr.
Stephan Kleuker

Udo2 (3)
Udo8 (9)

413

Streams (8/14): Filterung genauer (Einschub)

e Parameter in Stream-Methoden normale Objekte
public static Predicate<Integer> teiler(int val){
return X -> x%val == 0;

}

public static void main(String[] args) {

Stream<Integer> str = Stream.of(1,3,8,4,5,1,6);
Predicate<Integer> predl = x -> x%2 == 0;
str.filter(predl)

.forEach(System.out: :println);
System.out.println(predl.test(42));
// kein sinnvoller Zugriff auf str mehr moeglich
str = Stream.of(1,3,8,4,5,1,6);
str.filter(teiler(3))

.forEach(System.out: :println);

A WerFk O b O

0O0AD Prof. Dr. 414
Stephan Kleuker

Streams (9/14): Abbildung / Umwandlung (map)

HHHHHHHHHHHHHHHHHHH

Video
public void show4(){
this.studierende
.stream() 3: Udo2
.filter(s -> s.getMatnr()% 3 == 0) 9: Udo8
.filter(s -> s.getMatnr()% 2 == 1)
.map(s -> s.getMatnr() + ": " + s.getName())
.forEach(s -> System.out.println(s));
}

// Map-Ergebnis kann Objekt beliebigen Typs sein
// z. B. auch Object-Array
// man sieht auch mehrzeile Funktion mit Riickgabe

// .map(s -> {

// String[] erg = {s.getName(), ""+s.getMatnr()};
// return erg;
// })

00AD Prof. Dr. 415

Stephan Kleuker

https://youtu.be/rQchxhVxHL8

Streams (10/14): Detailanalyse

HHHHHHHHHHHHHHHHHHH

public void show5(){
this.studierende

.stream()

.peek(s -> System.out.println(s))
.filter(s -> s.getMatnr()%3 == 0)
.peek(s -> System.out.println(s))
.filter(s -> s.getMatnr()%2 == 1)
.peek(s -> System.out.println(s))
.map(s -> s.getMatnr() + ": "
.peek(s -> System.out.println(s))

.forEach(s -> System.out.println("-----

}

// logisch nacheinander abgearbeitet
// fir Performance und Parallelitat, startet

+ s.getName())

// Bearbeitung pro Objekt mit terminaler Methode

// peek sieht Objekt, konsumiert es nicht

// !! kein reines Method Chaining !!

00AD Prof. Dr.
Stephan Kleuker

Streams (11/14): Lazy Evaluation

public Set<Studierend> showLazy() {
return this.studierende
.stream()
.filter(s -> {
System.out.println(s);

HHHHHHHHHHHHHHHHHHH

return s.getMatnr() > 2 & s.getMatnr() < 9;

})
.skip(2)

1imit(3)
.collect(Collectors.toSet());

... // in Main
System.out.println(m.showLazy());

0O0AD Prof. Dr.
Stephan Kleuker

UteO
Udo©
Ute2
Udo2
Ute4d
Udo4
Uteb
Udo6

[Udo4 (5), Udo6
(7), Ute6 (6)]

(@)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

417

Streams (12/14): Zusammenfassung (reduce)

public void show6(){

System.out.println(

this.studierende
.stream()

.filter(s -> s.getMatnr()%3 == 0)

.filter(s -> s.getMatnr()%2 == 1)

.map(s -> s.getMatnr() + ": "

+ s.getName())

HHHHHHHHHHHHHHHHHHH

.reduce("Studis:", (sl1,s2) -> s1 + ", " + s2)

)5

Studis:, 3: Udo2, 9: Udo8

// reduce macht Schleife iiber alle Stream-Objekte
// sl1: bisheriges Ergebnis (initial "Studis")

// s2: aktuelles Objekt aus dem Stream

00AD Prof. Dr.
Stephan Kleuker

418

Streams (13/14): Gruppierung . »

public void show7(){
Map<Integer,List<Studierend>> aufgeteilt =
this.studierende
.stream()
.collect(Collectors
.groupingBy(s -> s.getMatnr() % 3));
aufgeteilt
.forEach((k,v) -> System.out.println(k + ": " +v));

0: [Uted (©), Udo2 (3), Ute6 (6), Udo8 (9)]
1: [Udo® (1), Ute4 (4), Udo6 (7)]

2: [Ute2 (2), Udo4 (5), Ute8 (8)]

// collect liefert Map mit Ergebniswert als key und Liste
// zugehoriger Objekte als value

0O0AD Prof. Dr. 419
Stephan Kleuker

Streams (14/14): viele weitere Moglichkeiten

public static void main(String[] args) {
IntStream.range(1, 4).forEach(System.out::println);

double d = IntStream.range(1, 4)
.average()
.0rElse(42);

System.out.println("d: " + d);

double d2 = IntStream.range(1l, 1)
.average()
.OorElse(0);

System.out.println("d2: " + d2);

W INEFEFQQ WDNEPR
N
o

IntStream.range(1, 4)

.mapToObj(p -> new int[]{p, p*p})
.forEach(a -> System.out.println(a[@] + " " + a[1]));

00AD Prof. Dr. 420
Stephan Kleuker

Dependency Injection L -

Video

woher kommen Objekte fir Exemplarvariablen?

e Variante 1: Werte werden als Parameter Ubergeben, aus denen
Objekte gebaut werden

e Variante 2: Objekte werden als Referenzen libergeben

— Optimierung: Typen der Objektvariablen sind Interfaces; so
konkrete Objekte leicht austauschbar

e Variante 2 heilst Dependency Injection mit get- und set-
Methoden oder Giber Konstruktoren

e gutes Video: https://www.youtube.com/watch?v=IKD2-MAkXyQ

e Standard-Framework: CDI (Contexts and Dependency Injection,
JSR-365, https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html)

00AD Prof. Dr. 421
Stephan Kleuker

https://www.youtube.com/watch?v=IKD2-MAkXyQ
https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
https://youtu.be/c-w4Qb1sLd4

[) [J] [) S
Dependency Injection - Beispiel
<<interface>> Inter1Real A
Inter1 P AP i nriint
+methla(...)... +Inter1RealA(int)
-intpf1 [- +methia(...):... Inter2Real B
G - nriint
Nutzung :]y e L e e G — —| +Inter2RealB(int)
-inter2
= e Inter2 T +meth2a(...):...
+Nutzung(Inter1,Inter2,Inter3) +meth2a(...)... <- — ——— n:i:tr £a
1 I::Stfz:?ﬁlﬁ f‘_m) Inter3RealD
; <<interface>> - name: String
-inter Inter3 +Inter3RealD(String)
+meth3a(...)..<F - —————————————4 +meth3a(...):...

Nutzend nutzend = new Nutzend(new InterlRealA(42)
, hew Inter2RealC(43)
, hew Inter3RealD("Hallo"));

00AD Prof. Dr. 422
Stephan Kleuker

CDI — Minibeispiel (1/4) e

e Ein Klasse Nutzend, zentrales Objekt, wird in mehreren Klassen

benotigt (soll hier Singleton sein; nur als Beispiel)
@Singleton // CDI-Anntotation
public class Nutzend {

private int rechte = 42;
private String name = "Douglas";

public int getRechte() {return this.rechte;}

public void setRechte(int rechte) {this.rechte = rechte;}
public String getName() {return name;}

public void setName(String name) {this.name = name;}

@Override
public String toString() {
return "Nutzend [rechte="+rechte+", name=’

+name+"]"; }

OO0AD Prof. Dr. 423
Stephan Kleuker

CDI — Minibeispiel (2/4) e

public class ControllerA {

@Inject
private Nutzend nutzend;

@PostConstruct

public void initialize() {
System.out.println("startA");

}

@PreDestroy
public void cleanup() {
System.out.println("endeA");

}

public void aendereRechte(int wert) {
this.nutzend.setRechte(wert);

}
public Nutzend getNutzend() { return this.nutzend; }

Ode Prof. Dr. 424
Stephan Kleuker

CDI — Minibeispiel (3/4) e

public class ControllerB {

@Inject
private Nutzend nutzend;

@PostConstruct

public void initialize() {
System.out.println("startB");

}

@PreDestroy
public void cleanup() {
System.out.println("endeB");

}

public void aendereName(String wert) {
this.nutzend.setName(wert);

}
public Nutzend getNutzend() { return this.nutzend; }

00AD Prof. Dr. 425
Stephan Kleuker

CDI — Minibeispiel (4/4) | »

public static void main(String[] args) {

Weld weld = new Weld();

try (WeldContainer wC = weld.initialize()) {
ControllerA ca = wC.select(ControllerA.class).get();
System.out.println("A: " + ca.getNutzend());
ca.aendereRechte(41);
ControllerB cb = wC.select(ControllerB.class).get();
cb.aendereName("Dirk");
System.out.println("B: " + cb.getNutzend());

}

} startA
A: Nutzend [rechte=42, name=Douglas]
startB
B: Nutzend [rechte=41, name=Dirk]
endeA
endeB

00AD Prof. Dr. 426

Stephan Kleuker

Java Module (1/5) — Services — Beispiel fiir Strategy |.........

Video
neben dem vorgestellten Modulansatz unterstutzt das Java-
Modulsystem Services (urspriingliches Konzept ab Java 6)

Service ist zunachst einfaches Interface (z. B. Dienstinterface),
zugehoriges Paket mit ,exports”
Service-Realisierer, z. B. Dienst1 realisieren Interface

— benotigt ,,requires” Modul mit Interface

— hat parameterlosen Konstruktor

— kennzeichnet die Dienstrealisierung

— provides DienstInterface with Dienstl
Dienstnutzungen mussen dies kennzeichnen

— uses DienstInterfaces

— JVM ermoaglicht tber alle vorhandenen Implementierungen

zu iterieren und zu nutzen

0O0AD Prof. Dr. 427
Stephan Kleuker

https://youtu.be/A6126vzwTPk

Java Module (2/5) - Beispiel

«module»
bsp.modulnutzung

+main

«module»
bsp.dienst

+dienst

«service»
«interface»
Dienstinterface

+ qualitaet():int

+ mach1(int,int):Ergebnis

----- > -text:String

Ergebnis

-ok:boolean = true

Main

+main(String[])

OOAD

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 0 SCIENCES

A
i
«module» Lo -, [«module»
bsp.dienst2 : | bsp.dienst1
|
+impl2 | 5 +impl1
Dienst2 L Dienst1

+ mach1(int,int):Ergebnis
+ qualitaet():int

+ mach1(int,int):Ergebnis
+ qualitaet():int
A

Prof. Dr.
Stephan Kleuker

428

Java Module (3/5) — module-info.java Dateien

module bsp.dienst {
exports dienst;

}

module bsp.dienstl {
requires transitive bsp.dienst;
exports implil;
provides dienst.DienstInterface

with impll.Dienst1; module bsp.modulnutzung {
} requires bsp.dienstl;
requires bsp.dienst2;
module bsp.dienst2 { uses
requires transitive bsp.dienst; dienst.DienstInterface;
exports impl2; }

provides dienst.DienstInterface
with impl2.Dienst2;

0O0AD Prof. Dr. 429
Stephan Kleuker

Java Module (4/5) - Nutzung = |

public class Main {
public static void main(String[] args) {
Serviceloader<DienstInterface> sl
= Serviceloader.load(DienstInterface.class);
for(DienstInterface di: sl) {
Ergebnis erg = di.machl(1l, 42);
System.out.println("Service: " + di.getClass()
+" Q: " + di.qualitaet()

+ " erg: " + erg.getText());
} Beispielausgabe:
} Service: class impl2.Dienst2 Q: 42 erg: 42
} Service: class impll.Dienstl Q: 20 erg: 43

e es wird immer nur ein Service pro Ausfihrung erstellt (Singleton)

e es werden keine Objekte direkt erstellt (kein new; zwar erlaubt,
verstoflt aber gegen Konzept)

00AD Prof. Dr. 430
Stephan Kleuker

Java Module (5/5) — Variante Factory

HHHHHHHHHHHHHHHHHHH

module bsp.dienstfactory {
requires transitive bsp.dienst;
exports impl3;
provides dienst.DienstInterface with impl3.DienstFactory;

}

public class DienstFactory {
public static DienstInterface provider() {
return new DienstInterface() {
@Override
public Ergebnis machl(int arg@d, int argl) {
return new Ergebnis();

}
@Override
public int qualitaet() { return 100; }
¥
0 D} Prof. Dr. 431
(r Stephan Kleuker

Nutzung von Komponenten

HHHHHHHHHHHHHHHHHHH

Kaempfend

Kaempfenderstellung

N\

N

e Komponente: konfigurierbare,
Ubersetzte Software, die klare
Funktionalitat anbietet

e Beispiel: Komponente bietet
Kampfer-Objekte an

e benotigt Klasse, die die
Erzeugung ermoglicht

}

public class KaempfenderstellungFactory {
public static Kaempfend erzeugen(typ:String, auswahl:int)

0O0AD Prof. Dr. 432
Stephan Kleuker

Validierungs-Framework (Bean Validation 1.1, JSR 349).".

XXXXXX

public abstract class Kaempfend {
@Min(value=0, message = "Gesundheit nicht negativ")
protected int gesundheit;

@Min(value=3, message="minimale Staerke beachten")
@Max(value= 15, message="maximale Staerke beachten")
protected int staerke;

@Min(value=5, message="minimales Geschick beachten")
@Max(value= 20, message="maximales Geschick beachten")
protected int geschick;

// wie vorher

0O0AD Prof. Dr. 433
Stephan Kleuker

Beispielnutzung der Validierung = L

public static void main(String[] s) {
AbstractKaempfendFactory kf = KaempfendArtFactory
.kaempfendFactoryErstellen("basic");
Kaempfend k = kf.kaempfendErstellen(2);
k.setGesundheit(-1);
k.setGeschick(22);
ValidatorFactory factory = Validation
.buildDefaultValidatorFactory();
Validator validator = factory.getValidator();
for (ConstraintViolation<Kaempfend> c :
validator.validate(k)) {
+ c.getMessage());

System.out.println(" ::

}
} :: maximales Geschick beachten
:: minimale Staerke beachten
: ¢ Gesundheit nicht negativ
00AD Prof. Dr. 434

Stephan Kleuker

Persistenz-Framework (JPA 2.1,JSR338) ..

@Entity

public abstract class Kaempfend {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
protected int knr;

@Min(value = 0, message = "Gesundheit nicht negativ")
protected int gesundheit;

@Min(value = 3, message = "minimale Staerke beachten")
@Max(value = 15, message = "maximale Staerke beachten™)
protected int staerke;

@Min(value = 5, message = "minimales Geschick beachten")
@Max(value = 20, message = "maximales Geschick beachten")

// wie vorher, konkrete Klassen auch mit @Entity annotiert

0O0AD Prof. Dr. 435
Stephan Kleuker

Beispielnutzung der Persistenz

public static void main(String[] s) {

AbstractKaempfendFactory kf = KaempfendArtFactory
.kaempfendFactoryErstellen("basic");

Kaempfend k = kf.kaempfendErstellen(2);

k.setGesundheit(100);

k.setStaerke(7);

k.setGeschick(9);

EntityManagerFactory emf = Persistence
.createEntityManagerFactory("KaempfendPU");

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

em.persist(k);
em.getTransaction().commit();
em.close(); SELECT * FROM Kaempfend
emf.close();
} KMR DTYPE GESCHICK GESUMDHEIT STAERKE
1 Xena q 100 7
00AD Prof. Dr. 436

Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

7. Konkretisierungen im
Feindesign

7.1 Zustandsdiagramme
7.2 Object Constraint Language

0O0AD Prof. Dr. 437
Stephan Kleuker

https://youtu.be/1GS2Gj_O0lQ

Verfeinerte Modellierung

e Durch die verschiedenen Sichten der Systemarchitektur wird der
Weg vom Anforderungsmodell zur Implementierung beschrieben

e Es bleiben offene Themen:
— Wie bekomme ich ein gutes Klassendesign (nachstes Kapitel)?

— Wie kann man das komplexe Verhalten von Objekten noch
beschreiben (Klassendiagramme sind statisch,
Sequenzdiagramme exemplarisch)?

Antwort: Zustandsdiagramme

— Wie kann man bei der Klassenmodellierung Randbedingungen
formulieren, was in Klassendiagrammen (Bedingungen in
geschweiften Klammern) nur bedingt moglich ist?

Antwort: Object Constraint Language

Prof. Dr. 438

OOAD
Stephan Kleuker

LZustandsdiagramme s

7.1
e generell wird der Zustand eines Objekts durch die Werte seiner

Exemplar- und Klassenvariablen beschrieben

e Haufig wird der Begriff Zustand auch fiir eine spezielle
Exemplarvariable genutzt, die z. B. Gber eine Enumeration
realisierbar ist

e z.B.:Ampel:rot, rotgelb, gelb, grin

e 7.B.:Projekt: vorbereitet, grob geplant, mitarbeitende
Personen zugeordnet, verschoben, in Bearbeitung, in
Endabnahme, in Gewahrleistung, beendet

e Uberginge zwischen den Zustianden werden durch Ereignisse,
zumeist Methodenaufrufe, veranlasst

e Uberginge lassen sich durch ein Zustandsdiagramm
(urspringlich Statechart nach D. Harel) spezifizieren

e Zustandsautomaten spielen auch in der theoretischen und

technischen Informatik eine zentrale Rolle

00AD Prof. Dr. 439
Stephan Kleuker

- >

Struktur von Zustandsdiagrammen

Startzustandllw Endzustand fl} B

(f Zustandname) 4 Geburtstag \I

Entry / ausgefuhrte Aktion beim Eintritt Ereignis [Bedingung] / Aktion .| Entry / einkaufen()
Do fausgefiihrte Aktion im Zustand -~ Do / feiern()
Exit! ausgefihrte Aktion beim uerlassenj I.\‘LE:-:it." aufraesumen()

e Zustandsdiagramm gehort zu einem Objekt einer Klasse
e alle Angaben fur Zustande und Transitionen sind optional

e Transition wird ausgefihrt, wenn Ereignis eintritt und
Bedingung erfullt ist

e ohne Ereignis und Bedingung wird Transition dann ausgefihrt,
wenn Entry, Do, und Exit durchlaufen

e Einfacher Automat muss deterministisch sein

0O0AD Prof. Dr. 440
Stephan Kleuker

Beispiel: Zustandsdiagramm eines Projekts

- >

HOCHSCHULE OSNABRUCK

-

Projekterzeugung \

. neues Projekt .

Entry/ setName();
setAufwand();

setStartGeplant();

\. setEndeGeplant(),

(Teilprojekt ergénzen neues Teilprojekt

W
__neue Aufgabe " Projektaufgabenerginzung \

L“I_Entr},u'.lr teilpmjektHinzufuegen{_L,J

Projektplanung] .
Ty

Entry/ prﬂjektaufgabeHinzthEgenQI

[Projekt hat

Fertigstellungsgrad emeuerﬁ

Viorganger] Planung
\ abgeschlossen neuer \ Entry/ setFertigstellungsgrad())
~ { Fertig ngsgrad
W
[Projekt hat (Projektdurchfiihrung) euer
Vorganger] %{ AufwandAktualisieren \
N4
— Projekt Entry/ setAufwand() /I
eilprojektvorgaenger setzen beendet
L\Entry! vurgaengerHinzufuegenU,l v
(Projektabschluss) }@

L\ Entry/projektArchivieren() /

e man erkennt: nach Planung keine Planungsanderung

OOAD

Prof. Dr. 441

Stephan Kleuker

Hierarchische Zustande

< »

HOCHSCHULE OSNABRUCK

é Projekterzeugung

Entry/ setName();
setAufwand(),

setStartGeplant();

" selEndeGeplant();

. neues Projekt —

A4

~

4 aklives Projekt

neues Teilprojekt Z.

(_ Teilprojekt erganzen
Qintr]r.’ milprﬂjekﬁ-linzufuegen[u

Projekiplanung) -
T

__neue Aufgabe >~

Projektaufgabenerginzung \

Vorganger] Planung
amesmIGSSE" neuer
[Projekt hat Fertigstellungsgrad
Vargdnger] v
(Projektdurchfiihrung euer

Teilprojektvorgaenger selzenw
Qintr]r." vorgaenge rHinzufuegenU}

Aufwands’ AufwandAktualisieren \
Entry/ setAufwand())

Entry/ projektaufgabeHinzufuegen())

Fenigﬁtellungsgmd Emeuemw
Entm" setFemgsteHur‘lgsgrad{ﬂ

. J
Projekt
beendet Projekt
8 abgebrochen
(" Projektabschiuss) >@
_ EntrylprojektArchivieren())
00AD Prof. Dr. 442

Stephan Kleuker

- >

Parallele Unterzustande

Video 4 Unterzustand A

e unabhangige Teilzustande
konnen in parallelen
Zustanden bearbeitet
werden

e ohne Parallelitat musste
Kreuzprodukt der Zustande
der parallelen Automaten
betrachtet werden

0O0AD Prof. Dr. 443
Stephan Kleuker

https://youtu.be/rLL77u-pWP4

Beispiel: Uhr

- >

HOCHSCHULE OSNABRUCK

unten

unten

unten

unten

OOAD

12h
Sekunden

24h
Sekunden

Prof. Dr.
Stephan Kleuker

444

Zustandsmodellierung und Realzeitsysteme = ... -

e in klassischen OO-
Programmen gibt es
meist wenige zentrale
Klassen, fur die sich eine
Zustandsmodellierung
anbietet

Objekt angeklickt
[zeit >=]0.5 sek]

Einzelklick | <

\ Entry/ selektiert=selektiertesObjekt)

Objekt ahgeklickt

e |n Systemen mit Zeit kann bjekt apgeklickt

Zustandsmodellierung
Zeitbedingungen
beinhalten

e auch warte(5 sek)

OOAD

Objekt apgeklickt [nicht selektiert
[selektiert[angeklickt angeklickt]
und zeit |< 0.5 sek]

(Doppelklick w

\ Entry/ selektiert.starten())

Prof. Dr. 445
Stephan Kleuker

Event [Condition] / Action o

HHHHHHHHHHHHHHHHHHH

e Transitionsbeschriftung Ereignis[Bedingung]/Aktion
e Was ist Ereignis? Hangt von Applikation ab
— Methodenaufruf

— Ereignis im Programm (Variable wechselt Wert)
— technische Systeme: Signale

typisches Beispiel: Steuersysteme

e erhalten Signale (->Ereignisse) von Sensoren wenn etwas
passiert (z. B. ein-/ausgeschaltet)

e |esen Werte anderer Sensoren, Teilsysteme (-> Bedingung), die
Entscheidungen beeinflussen

e senden Signale (-> Aktion) an andere Systeme

0O0AD Prof. Dr. 446
Stephan Kleuker

Microsteps und Macrosteps (1/2) o e

e Actions eines Teilautomaten konnen Events eines anderen
Teilautomaten sein

~ 9 ~
ool ol
o 7 :
7
_ Zir Y,

e Microstep: einzelne Schritte betrachten

Start -> K(A1,B1) —p-> K(A2,B1) —x-> K(A2,B2) —g-> K(A3,B2) —y-
> K(A3,B3) —z-> K(A3,B1) —r-> K(A1,B1)

00AD Prof. Dr. 447
Stephan Kleuker

Microsteps und Macrosteps (2/2) o e

4 K)

e Macrostep: nur Zustande nach vollstandiger Bearbeitung
betrachten (Ausnahme: Livelock)

Start -> K(A1/B1) —p-> K(A3/B3) —z-> K(A1/B1)
e typischerweise nur an Macrosteps interessiert

00AD Prof. Dr. 448
Stephan Kleuker

Beispiel: Start-Stopp-Automatik (1/4)

Video

e zentrale Aufgabe: Start-Stopp-Automatik stellt den Motor
immer dann selbststandig aus, wenn dieser nicht mehr
benotigt wird (z. B. Halt an Ampel)

e Randbedingung: keine Abschaltung bis maximal 3 Grad und ab
minimal 30 Grad

e Ablauf:

— Zundschlissel einstecken, Motorstartknopf dricken, dann
startet Automatik

— Motorein- und Abschaltung wird anhand der Kupplung
erkannt

— Automatik kann auch wieder gestoppt werden
e [Frage: was fehlt alles zur Realitat]

00AD Prof. Dr. 449
Stephan Kleuker

https://youtu.be/m7hk_gWw6yI

Beispiel: Start-Stopp-Automatik (2/4)

e Klarung, von welche Sensoren werden Signale empfangen:
— Zundschloss: start und ende
— Kupplung: leerlauf und druecken
— Automatiksteuerung: an und aus
e Klarung, welchen Sensoren kénnen abgefragt werden:
— Temperaturwert temp in lokaler Variablen
e Klarung an welche Aktoren Signale geschickt werden

— Motorsteuerung: motor_an und motor_aus

0O0AD Prof. Dr. 450
Stephan Kleuker

Beispiel: Start-Stopp-Automatik (3/4)

< »

HOCHSCHULE OSNABRUCK
NIVERSITY 0 SCIENCES

,Blockschaltbild”

«Quelle» «Quelle»
«Signal» «Kontinuierlich»
Ziundschloss Temperatur

\J/temp

jjl/start \I/ende

«Quellex»

. dricken

«Signal» T «Steuerung»

Kupplung Automatik motor_an
«Quelle» an > motor=aus
«Signal» aus

Automatik =

0OAD Prof. Dr.

Stephan Kleuker

«Ziel»
«Signal»
Motorsteuerung

451

Beispiel: Start-Stopp-Automatik (4/4)

< »

HOCHSCHULE OSNABRUCK

4 in_Betrieb)
/7(fahrbereit) A star_stopp_aktiv
(ruhe)/ start
druecken/ . ; | laufend)
motor_an an/mgtor_an
leedauf
ende/motor_aus [temp=>3
&& temp<30)/
W motor_aus
an
(fahrend
druecken/ W
® U, M ey oot
druecken leerdauf - eI)
. h o vy
00AD Prof. Dr. 452

Stephan Kleuker

Umsetzung von Zustandsdiagrammen

e Abhangig davon, wie formal die Zustande und Transitionen
spezifiziert sind, kann aus Zustandsdiagrammen Programmcode
erzeugt werden

e Typisch: Iteratives Vorgehen: informelle Beschreibungen werden
schrittweise durch formalere ersetzt

e Ereignisse konnen fiur folgendes stehen
— Methodenaufrufe
— externe Ereignisse des GUI (-> Methodenaufruf)

— Teilsituation, die bei der Abarbeitung einer Methode auftreten
kann

e Automat wird zunachst zu komplexer Methode, die z. B. anhand
der Zustande in Teilmethoden refaktoriert werden kann

00AD Prof. Dr. 453
Stephan Kleuker

GUI als Zustandsautomat

< »

HOCHSCHULE OSNABRUCK
UNIVERSITY Of IED SCIENCES

einloggen [Anmeldung

\ erfolgreich]

/gescheiterte Anmeldung\
Anmeldung nicht
erfolgreich
Qzum Start)
. P
zum Start

OOAD

nicht einloggen [Anmeldung erfolgreich]
N4
3 start k: /Iaufende Anwendung\
Name
Passwort ®
Ceinloggen)

. P K S

\ \ ausloggen

Prof. Dr. 454

Stephan Kleuker

< »

Android als Zustandsdiagramm o i
i Activity E: 3 Activity b il Activity
’9 erzeugt = gestartet = lauft
\Entry/onCreate()/ \Entry/onStart() \Entry/onResume())
andere N
Activity ifn > Lzef
Vordergnund/ Ae ‘rt. clt Activity
onPausg() {yuty zerstort
zuruck
(HENly w Activity w Applikation mit
Slarat emait pausiert | hgherer|Prioritat
Entry / onRestart() Activity benotigt Bpeicher
nicht mehr
sichtbar /
onStop()
W
(- Activity R o
terminiert (_ Activity w
% ~ K nicht sichtbar)
@ntry/onDestmy())
00AD Prof. Dr. 455

Stephan Kleuker

Klassendiagramm und versteckte Randbedingungen |.........
7.2 Video : :
Welche Randbedingungen vermuten Sie?
<<enumeration>> Studierend
Veranstaltungsstatus - name:String
laeuft - matnr:int
abgeschlossen - fach: String
gesfrichen - freisemester:boolean
+ veranstaltungEintragen(v: Veranstaltung):void
+ bestandeneVeranstaltungen():ArrayList
+ belegteVeranstaltungen():int
+ nichtBelegt(v: Veranstaltung):boolean
Pruefung + hatTheorieBestanden():boolean
- datum:Date "
- note:double |- —————_ ________° 3 &) Ton
belegen
* | -studienfach
Lehrkraft Veranstaltung
- name:String — - litel:String
- imAusland:boolean | ! halten : status:Veranstaltunqsstatusi
0O0AD Prof. Dr. 456

Stephan Kleuker

https://youtu.be/5lc7kVYcX8s

Grundidee von Object Constraint Language (OCL) ...

Rahmenbedingungen (Constraints) definieren, die von
Objekten bzw. Objektmengen eingehalten werden konnen

Constraints sind prufbar

moglichst einfach formulierbar (urspringlich zur Formulierung
von Geschaftsregeln flr Versicherungsanwendungen,
[Syntropy, IBM])

Angepasst an Objektorientierung:
— Zugriff auf Exemplarvariablen

— Zugriff auf Methoden, die keine Objektveranderungen
vornehmen

— Vererbung wird beachtet
typisiert, Collections wichtiger Typ

0O0AD Prof. Dr. 457

Stephan Kleuker

Einfache Bedingungen fiir Objekte (Invarianten)

e Die Matrikelnummer ist mindestens 10000
context Studierend inv hoheMatrikelnummern:
self.matnr >= 10000
e eine Variante:
context s:Studi inv:
s.matnr >= 10000
e context gibt eindeutig an, um welche Klasse es geht

e Strukturierung durch Nutzung der Paketstruktur
package com::meineFirma: :meineSW
context Studierend inv:
context Studierend inv:
endpackage

00AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

458

Vor- und Nachbedingungen fiir Methoden @ ...

Wenn Studierend-Objekt da, dann hort er Veranstaltungen
context Studierend::belegteVeranstaltungen():Integer
pre studiIstDa: self.freisemester = false
post hoertVeranstaltungen: result > ©

Man kann auf Parameter der Methoden zugreifen
result ist vordefiniert (vom Rickgabetyp)

Erhéhung der Anzahl der belegten Veranstaltungen:
context Studierend::veranstaltungEintragen(v: Veranstaltung)
pre: nichtBelegt(v)
post: self.belegteVeranstaltungen()@pre
= self.belegteVeranstaltungen()-1

self.belegteVeranstaltungen()@pre, fur Ergebnis vor der
Methodenausfiihrung

0O0AD Prof. Dr. 459
Stephan Kleuker

Einschub: Basistypen und Operationen

e Jeder OCL-Ausdruck hat einen Typ

e Verknlpfe Ausdriicke missen vom Typ her passen

e Geringe Typanpassungen moglich

HHHHHHHHHHHHHHHHHHH

Typ Beispielwerte

Boolean true, false

Integer 1, -5, 42, 4242424242

Real 3.14, 42.42, -99.999

String 'Hallo Again', 'Heidi', ''

Typ Beispieloperationen

Boolean and,or,xor,not,implies,if then else endif
Integer * +, -, [/, abs()

Real 4+, -, [/, floor()

String concat(), size(), substring()

OOAD

Prof. Dr.
Stephan Kleuker

460

Zugriff auf Assoziationen

Video

e Zugriff auf verbundene Elemente moglich, Kardinalitaten
beachten (einfach oder Menge)

e wenn Relation benannt, dann dieser Name
sonst tber Name der verbundenen Klasse (klein)

e Lehrkrafte laufender Veranstaltungen sind nicht im Ausland
context Veranstaltung inv:
self.status = Veranstaltungsstatus::laeuft
implies
not self.lehrkraft.imAusland
e Man sieht auch Zugriff auf eine Enumeration

0O0AD Prof. Dr.
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

461

https://youtu.be/mjlNRDIIUBU

Assoziationsklassen o

HHHHHHHHHHHHHHHHHHH

e Ausgehend von Assoziationsklassen kann mit Punktnotation auf

beteiligte Klassen (deren Objekte) mit deren Rollennamen
zugegriffen werden

e Prufungsnoten nur fir abgeschlossene Veranstaltungen
context Pruefung inv:
self.studienfach.status =
Veranstaltungsstatus::abgeschlossen
implies
(self.note>=1.0 and self.note<=5.0)

0O0AD Prof. Dr. 462
Stephan Kleuker

Beispiele: Mengenoperationen (1/2)

e bei der Betrachtung zugehaoriger Objekte ist das Ergebnis meist
eine Collection von Objekten

e in OCL auch: Set, OrderedSet, Sequence, Bag

e auf Collections existieren verschiedene Methoden, genereller
Aufruf
collection -> methode(<parameter>)

e Ergebnis kann wieder eine Collection oder ein Wert eines
anderen Typs sein

e Studi macht hochstens 12 Veranstaltungen

context Studierend inv:
self.studienfach
-> select (s | s.status =
Veranstaltungsstatus::laeuft)

-> size() <= 12

00AD Prof. Dr. 463
Stephan Kleuker

Beispiele: Mengenoperationen (2/2)

e Korrektheit von hatTheorieBestanden
context Studierend: :hatTheorieBestanden():Boolean
post: result = self.pruefung
-> exists(p | p.note<=4.0
and p.studienfach.titel="'Theorie'))

e Korrektheit fir bestandeneVeranstaltungen

context Studierend::
bestandeneVeranstaltungen():Collection

post: result=self.pruefung
->select(p | p.note<=4.0)
->iterate(p:Pruefung;
erg:Collection=Collection{}|
erg->including(p.studienfach))

00AD Prof. Dr. 464
Stephan Kleuker

HHHHHHHHHHHHHHHHHHH

Video

9. Implementierungsaspekte

0O0AD Prof. Dr. 465

https://youtu.be/ZjAWBLWZl2E

Beispiel: Rahmenbedingungen fiir SW-Architektur |........

9.1

e Berlcksichtigung von speziellen SW-Schnittstellen nicht
objektorientiert entwickelter Systeme, z. B. von Application
Programming Interfaces (API) fremder SW

e Beriicksichtigung/Benutzung existierender
Datenhaltungssysteme, z. B. Vorgabe des
Datenbankmanagementsystems (DBMS)

e Berlcksichtigung bestimmter Design-Prinzipien, z. B.
Gesamtsteuerung mit Enterprise Java Beans (JEE) oder .NET fur
die Realisierung

e Alt-Software (z. B. in COBOL), so genannte Legacy-Systeme
mussen eingebunden werden; Einsatz einer Middleware (z. B.
Common Object Request Broker Architecture, CORBA)

00AD Prof. Dr. 466
Stephan Kleuker

Einfluss nichtfunktionaler Anforderungen

Beispiel: Sicherheit (Security)

e Alle Nachrichten mussen Uber den speziellen Krypto-Server
laufen; dieser hat bestimmte Bandbreite (Bottle-neck); SW
muss auf allen Seiten maoglichst viel ohne Verbindung arbeiten
konnen (Redundanz wird erlaubt)

Beispiel: Sicherheit (Safety)

e Berechnungen zur Steuerung mussen redundant auf drei
Rechnern mit unterschiedlichen Verfahren durchgefiihrt
werden

Beispiel: Performance

e Die rechenintensiven 3D-Berechnungen mussen sehr schnell
sein; dies kann zum Einsatz von C mit langen komplexen
Funktionen flhren

00AD Prof. Dr. 467
Stephan Kleuker

LRahmenbedingung: verteilte Systeme s

9.2
e in der klassischen OO-Programmierung gibt es einen

Programmablauf (Prozess) und man nutzt synchrone Aufrufe:
Objekt O1 ruft Methode von Objekt O2 auf; O2 Gbernimmt die
Programmausfihrung und antwortet dann O1

e bei verteilten Systemen laufen viele Prozesse parallel ab, die
Informationen austauschen kénnen

e synchroner Aufruf ist moglich, bedeutet aber, dass Verbindung
aufgebaut werden muss und Sender bzw. Empfanger auf
Bereitschaft warten miissen

e asynchroner Aufruf bedeutet, dass Sender Aufruf abschickt und
danach weiterarbeitet; spater pruift, ob ein Ergebnis vorliegt

e asynchrone Aufrufe sind schneller (nur abschicken); Prozesse sind
aber schwer zu synchronisieren

e die Herausforderung effizienter verteilter Systeme hat nicht die

eine Losung und wird Sie Ihr Informatik-Leben-lang verfolgen

0O0AD Prof. Dr. 468
Stephan Kleuker

Probleme der Aufrufmechanismen

synchroner Aufruf

Prozess A Prozess B

fe”eChne_x()

<

warten au
Problem: Deadlock Antwort

HHHHHHHHHHHHHHHHHHH

Prozess C

perechne_y warten au
Antwort

asynchroner Aufruf

Problem: B denkt, x hat vor
y stattgefunden

Problem: C denkt, x hat vor
y stattgefunden, A denkt,
y hat vor x stattgefunden

J/()

OO0AD Prof. Dr.
Stephan Kleuker

x()

469

Typische Probleme verteilter Systeme o e

Deadlocks: kein Prozess/Thread kann voran schreiten
partielle Deadlocks: einige Prozesse im Deadlock, andere nicht

Livelocks: System versucht, sich zyklisch zu synchronisieren, ohne
dass das System voran schreitet

(starke) Fairness : kommen Prozesse, die immer mal wieder darauf
warten, in den kritischen Bereich zu kommen, auch dran

(schwache) Fairness: kommen Prozesse, die immer darauf warten,
in den kritischen Bereich zu kommen, auch dran

synchronized() in Java (Methode wird garantiert ohne
Parallelnutzung des aufgerufenen Objekts genutzt) hat starken
negativen Einfluss auf die Laufzeit

Erinnerung/Ausblick: Notwendige Transaktionssteuerung bei
Datenbankmanagementsystemen

00AD Prof. Dr. 470

Stephan Kleuker

Beispiel: Varianten von Client-Server-Systemen

e Thin Client: Hier nur e Fat Client: Client fihrt eigene
Datenannahme, komplexe Berechnungen aus;
Weiterleitung, Darstellung, nutzt Server nur zur Verwaltung
keine komplexen zentraler Informationen und zum
Berechnungen Nachrichtenaustausch

e Beispiele: Web-Browser, DB- e Beispiel: vernetzbare Stand-
Clients alone-Spiele (Autorennen)

Client .
$Netzwerk Client
1Netzwerk
Server
Server
00AD Prof. Dr. 471

Stephan Kleuker

Beispiel: 3-Tier-Architektur

Verteilung:
L, Nur Darstellung (GUI) beim
u Client Client
Prasentationsschicht e eigener Server fur Anwendung
lﬂ\@ e eigene Datenspeicherung
Vorteile:
Server fur Anwendung e bendtigte DB-Verbindungen
eigentliche Anwendungs-SW kdnnen angepasst werden
(Kosten)
@ e Datenbank nicht direkt far
Client zugreifbar (Sicherheit)

Datenbank-Server

persistente Datenhaltung * Anderungen einer Schicht

mussen andere Schichten nicht
beeinflussen

OO0AD Prof. Dr. 472
Stephan Kleuker

LNutzung von Programmbibliotheken s

9.4
* Programmbibliotheken stellen Standardlésungen fiur haufig

wiederkehrende Probleme dar

e typische Nutzung: entwickelnde Person erzeugt und ruft Objekte
(Klassen) der Bibliothek auf

e Bibliotheken sind gepruft, (hoffentlich) fir Laufzeiten optimiert

e Dokumentation von Bibliotheken wichtig zum effizienten Einsatz
(was rufe ich wann auf)

e Je groRer der Verbreitungsgrad, desto einfacher die
Weiterverwendung von Ergebnissen (grofSer Vorteil der Java-
Klassenbibliothek)

e Grundregel fur erfahrene entwickelnde Personen: Erfinde das Rad
niemals zweimal, weils aber, wo viele Blaupausen fur viele
verschiedene Rader sind

e Grundregel fur mit Informatik-Beginnende: Lerne zu verstehen,
wie man das erste Rad baut, baue das erste Rad und lerne warum

man wie die Blaupause variieren kann
0O0AD Prof. Dr. 473

Stephan Kleuker

Udee von Komponenten

9.5

Komponenten sind komplexe in sich abgeschlossene , binare“ SW-
Bausteine, die grolRere Aufgaben tibernehmen kénnen

Ansatz: SW statt aus kleinen Programmzeilen aus grolsen
Komponenten (+ Klebe-SW) zusammen bauen

Komponenten werden konfiguriert, dazu gibt es get-/set-Methoden
(Schnittstelle) oder/und Konfigurationsdateien

Beispiel Swing-Klassen, wie JButton haben (u. a.)
Komponenteneigenschaft; man kann u. a. einstellen:

— Farben (Hintergrund, Vordergrund)
— Schrifttypen

— Form der Ecken

— dargestelltes Bild

Komponenten sind themenorientiert und konnen unterschiedliche
Aufgaben erfillen (z. B. Daten filtern, Werte Gberwachen)

0O0AD Prof. Dr. 474

Stephan Kleuker

Idee der Framework-Technologie

9.6

e statt vollstandiger SW werden Rahmen programmiert, die um
Methodenimplementierungen erganzt werden missen

e Frameworks (Rahmenwerke) kénnen die Steuerung
gleichartiger Aufgaben tibernehmen

e typische Nutzung: entwickelnde Person instanziiert
Framework-Komponenten, d. h. Gbergibt seine Objekte zur
Bearbeitung durch das Framework; typischer Arbeitsschritt:
Framework steuert, d. h. ruft Methode der entwickelnden
Person auf

e eventuelles Problem: schwieriger Wechsel zu anderem
Framework oder bei Abloésung des Frameworks

00AD Prof. Dr. 475
Stephan Kleuker

Ziele komplexere Framework-Ansatze

neben Spezialaufgaben werden hauptsachlich folgende Aufgaben
gelost

e sorgenfreies Lesen und Speichern von Objekten in
Datenbanken (Persistenz)

e sorgenfreie konsistente Verteilung von Informationen
(Prozesskommunikation)

e sorgenfreie Steuerung verteilter Abldufe mit Uberwachung von
Transaktionen

e Beispiele sind Jakarta Enterprise Edition, Microsoft Dot-Net-
Technologie, Spring, Hibernate, viel im Bereich AJAX

00AD Prof. Dr. 476
Stephan Kleuker

Persistente Datenhaltung

HHHHHHHHHHHHHHHHHHH

9.7
Typische Java-Moglichkeiten

e Anschluss an klassische relationale DB lber JDBC (typisch bei
Anbindung an existierende DB)

e Nahtlose Integration der Datenhaltung in die Entwicklung
(Ansatz: statt Objekt zu erzeugen Methode holeObjekt(), spater
sichere Objekt), typisch fur Hibernate (haufig genutzt, bei
kleinen Spezialanwendungen, z. B. Handy, Organizer)

e relativ nahtlose Integration durch zusatzliche Software, die
objekt-relationales Mapping Gbernimmt

e Nutzung eines Frameworks, das Persistenz und
Transaktionssteuerung Ubernimmt, Enterprise Java Beans

0O0AD Prof. Dr. 477
Stephan Kleuker

Beispiel: JavaBeans (kleiner Ausschnitt) @ ...

e Java unterstutzt Reflektion, damit kann ein Objekt nach seiner

Klasse, seinen Exemplarvariablen und Exemplarmethoden befragt
werden

e Halt man sich an folgende einfache Regel fir eine Klasse
— sie implementiert Serializable (geht nur, wenn alle
verwendeten Typen Serializable)

— fur alle Exemplarvariablen gibt es die Standard get- und set-
Methoden

— es gibt einen leeren Default-Konstruktor
dann sind einige Framework-Ansatze nutzbar
— Objekte speichern und lesen in XML

— Nutzung als JavaBeans (sinnvoll weitere Standardmethoden)
— Objekte speichern in einer Datenbank mit JPA, als Entity

— Objekte im Binarformat lesen und schreiben (reicht
Serializable)

0O0AD Prof. Dr. 478
Stephan Kleuker

XMLEncoder und XMLDecoder (Ausschnitt) = ...

private void speichern(String datei){
try (XMLEncoder out= new XMLEncoder(
new BufferedOutputStream(new FileOutputStream(datei)))){
out.writeObject(table.getModel());
} catch (FileNotFoundException e) {} //wegschauen

}

private void laden(String datei){

try (XMLDecoder in= new XMLDecoder(
new BufferedInputStream(new FileInputStream(datei)))){

table.setModel ((DefaultTableModel)in.readObject());
} catch (FileNotFoundException e) {} //wegschauen

Prof. Dr. 479

OOAD
Stephan Kleuker

LRefa ctoring s

9.10
e Komplexe Methoden sollen grundsatzlich vermieden werden

e |Ldsungsansatz: Refactoring, d. h. ein Programmblock wird in einer
Methode mit selbsterklarendem Namen ausgegliedert
e Wann ist Ausgliederung moglich?
— Im Block darf nur eine lokale Variable auf der linken Seite einer
Zuweisung stehen
e Wie funktioniert Refactoring?
— Bestimme alle lokalen Variablen, die im Block lesend genutzt
werden; diese werden zu Parametern
— Falls eine lokale Variable links in einer Zuweisung vorkommt,
bestimmt sie den Riickgabetypen (sonst void)

e Exemplarvariablen spielen keine Rolle, da auf sie in allen
Methoden der Klasse zugegriffen werden darf

e Probleme bei mehr als einer zu verandernden lokalen Variablen

oder bei enthaltenen Riickspriingen (aufwandig regelbar)
0O0AD Prof. Dr. 480

Stephan Kleuker

Refactoring — Positives Beispiel

HHHHHHHHHHHHHHHHHHH

public int ref(int x, int y, int z){

int a = 0;
if(x > 0){
a = X;
X++;
==Y
a=a+y+ z;
}

return a;

}

OOAD

public int ref(int x, int y, int z){

int a = 0;
if(x > 0){
a = this.mach(x, vy,

}

return a;

}

private int mach(int x,
int a;
a = X;
X++;
==Y
a=a+y+ z;
return a;

z);

int y, int z){

Prof. Dr.
Stephan Kleuker

481

Refactoring — nicht einfaches Beispiel @ .

public int ref2(int x){

int a = .
. Extract Method
int b = '
int c = 0; i Ambiguous return value: selected block contains more than one assignment ko
if (X s 0){ local variable,
a = X;
b = Xx; 4 I
C = X;
return a + b + c;
0O0AD Prof. Dr. 482

Stephan Kleuker

Refactoring — (nicht) einfaches Beispiel in C++

int Rechnung::ref2(int x){

HHHHHHHHHHHHHHHHHHH

int a = 0;
int b = 0;
int ¢ = 0;
if (x > 0) {
abcAnpassen(a, b, ¢, x);
}
return a + b + c;
}
void Rechnung::abcAnpassen(int& a, int& b, int& c, int x){
a = X;
b = x;
C = X;
}
00AD Prof. Dr.

Stephan Kleuker

483

LDomain Specific Languages (DSL)
9.8

* Problem: General Purpose Sprachen sind sehr méachtig, aber fir
spezifische Entwicklungsbereiche geht sehr viel Energie in fur
den Bereich gleichartige Programmierung

e Spezielle Entwicklungssprache fir individuellen Bereich,
spezielle komplexe Hochsprachelemente anbietet

e Neue Sprache z. B. mit XML (Syntax mit XML-Schema)
darstellbar; Umwandlung in Programm mit Ubersetzung (z. B.
XSLT) ; hilfreich ist Visualisierungsmoglichkeit der DSL

e Hinweis: UML (evtl. mit konkreter Auspragung) kann mit MDA-
Transformationen auch als spezieller DSL-Ansatz angesehen
werden

00AD Prof. Dr. 484
Stephan Kleuker

< »

DSL Prozesse rocHULE osAenck

Nutzung der DSL lﬁ

Erstellung der DSL%

Programmierung in der DSL)

Erstellung Domain-spezifischer V
Befehle
V/ Parametrisierung und
Start des Generators

Festlegung der Semantik, durch

Domanen- ngabe der Ubersetzung der Befehl \'4
Entwicklung Applikations- Complllerung und Ausfihrung
entwicklung des generierten Quellcodes
OOAD Prof. Dr. 485

Stephan Kleuker

LModeI Driven Architecture oo e

9.9¢ Ansatz: Haufig benotigt man die gleichen Ideen (z. B.
Sortierverfahren) in sehr unterschiedlichen Sprachen; warum
nicht in einer Sprache modellieren und dann in andere
Sprachen transformieren?

e Da Sprachen extrem unterschiedlich, soll Modellumwandlung
schrittweise passieren

e Zur Modellbeschreibung wird eigene Sprache mit eigener
Semantik bendtigt (Metamodell und Metametamodell)

e Ansatz: Umwandlung des CIM mit Transformationsregeln in ein
PIM und dann ein PSM

CIM: Computer Independent Model
PIM: Platform Independent Model
PSM: Platform Specific Model
e 7.B. UML-Modell, dann Realisierungssprache wahlen, dann

HW-Plattform mit Kommunikationsprotokollen wahlen (zwei

parametrisierte Transformationen)

0O0AD Prof. Dr. 486
Stephan Kleuker

< »

Prozess der MDA (Theorie)

3 e Realitat: haufig nur eine
Modellierende Personen entwerfen konkrete Ebene
zu realisierendes System

e viele manuelle
< Einstellungen fir die
Transformation

(Modellierung wahlit Sprache
f

ur nachste konkretere Ebene Modellierung verfeinert zu
\ realisierendes System

Werkzeug transformiert
Modell in konkreteres Modell

e Generieren gibt es schon

[System nicht ausfiihrbar] lange (YACC, Dateien zur
System ausfiihrbar] Beschreibung von Fenstern,
fertiges System wird von UML zum
ausgefuhrt
é Programmskelett)
00AD Prof. Dr. 487

Stephan Kleuker

Formaler Hintergrund der MDA

- => Semantik definiert durch
—> Abarbeitungsreihenfolge

HHHHHHHHHHHHHHHHHHH

I Instanz von
\ 4

Modellartl

onkrete Menge von
Regeln mit konkreten
Parametern

I'Instanz von
\ 4

Transformations-

Instanz von

A 4

regein

\ 4
Transformations-
model

\ |

S\ |

| \4 4

Meta Object Faciliy (MOF)

OOAD

Prof. Dr.
Stephan Kleuker

>

Modellart2

488

Model Driven Software Development = | .. -

Verwaltung * | Element
typ:String

Codegenerator Public class {Verwaltung.liname} {
<foreach Element e:Verwaltung.element>
private List<{e.typ}> {e.name};

Modell }
Verwaltung
| liname=,Hauptliste* generierter Code
-Iélr?g]megi,,bestellende“ public class Hauptliste {
- typ=,Bestellend" private List<Bestellend> bestellende;
L Element private List<Produkt> produkte;
- name=,produkte* }

- typ=,Produkt’
z. B. https://projects.eclipse.org/projects/modeling.emf.mwe

00AD Prof. Dr. 489
Stephan Kleuker

https://projects.eclipse.org/projects/modeling.emf.mwe

	Folie 1
	Folie 2: Ich
	Folie 3: Ablauf
	Folie 4: Verhaltenscodex
	Folie 5: Praktikum genauer
	Folie 6: Praktikum - Aufgabenbearbeitung
	Folie 7: Veranstaltung im Studienkontext
	Folie 8: Skript = Buch
	Folie 9: weitere Literatur
	Folie 10: Werkzeuge
	Folie 11: Inhaltsverzeichnis
	Folie 12
	Folie 13: Umfeld von SW-Projekten
	Folie 14: Prozesse in Unternehmen aus SW-Projektsicht
	Folie 15: Rollenbegriff
	Folie 16: Prozessbegriff
	Folie 17: Prozessmodellierung mit Aktivitätsdiagrammen
	Folie 18: Parallelität in Prozessen
	Folie 19: Beteiligte, Produkte, Werkzeuge (optional)
	Folie 20: Anmerkungen
	Folie 21: Beispiel: Vertrieb (1/4)
	Folie 22: Beispiel: Vertrieb (2/4)
	Folie 23: Beispiel: Vertrieb (3/4)
	Folie 24: Beispiel: Vertrieb (4/4)
	Folie 25: Prozessverfeinerung: Kosten kalkulieren
	Folie 26: Modellierungsfalle
	Folie 27: Modellierungsvarianten
	Folie 28: Problem Lesbarkeit
	Folie 29: Problem Abstraktionsgrad
	Folie 30
	Folie 31: Historie des SW-Engineering (1/4)
	Folie 32: Historie des SW-Engineering (2/4)
	Folie 33: Historie des SW-Engineering (3/4)
	Folie 34: Historie des SW-Engineering (4/4)
	Folie 35: Warum scheitern SW-Projekte (kleine Auswahl)
	Folie 36: Antworten des Software-Engineering
	Folie 37: Definitionsversuch Software-Engineering
	Folie 38
	Folie 39: Die Phasen der SW- Entwicklung
	Folie 40: Wasserfallmodell
	Folie 41: Prototypische Entwicklung
	Folie 42: Iterative Entwicklung
	Folie 43: Fertigstellung mit Iterationen
	Folie 44: Iterativ Inkrementelle Entwicklung (State of the Art)
	Folie 45: Agile Methoden – Beispiel Scrum
	Folie 46
	Folie 47: so nicht (1/4): Beispiel-Szenario
	Folie 48: so nicht (2/4): Die Projektplanung
	Folie 49: so nicht (3/4): Die Schritte zum Projektmisserfolg
	Folie 50: so nicht (4/4): so doch, Geschäftsprozessanalyse
	Folie 51: Einschub: Swimlanes (1/2)
	Folie 52: Einschub: Swimlanes (2/2)
	Folie 53: Aufgabe der Anforderungsanalyse
	Folie 54: Probleme mit Anforderungen an große Systeme
	Folie 55: Checkliste zum Finden von Stakeholdern (1/3) [RS]
	Folie 56: Checkliste zum Finden von Stakeholdern (2/3)
	Folie 57: Checkliste zum Finden von Stakeholdern (3/3)
	Folie 58: Regeln für die Definition von Zielen
	Folie 59: Schablone zur Zielbeschreibung
	Folie 60: Projektbeschreibung
	Folie 61: Ziele für eine Projektmanagementsoftware (1/3)
	Folie 62: Ziele für eine Projektmanagementsoftware (2/3)
	Folie 63: Ziele für eine Projektmanagementsoftware (3/3)
	Folie 64: Rahmenbedingungen und weiteres Vorgehen
	Folie 65: Überblick über den Analyseprozess
	Folie 66: Erfragung des WAS?
	Folie 67: Use Case (Anwendungsfall)
	Folie 68: Business Use Case [OW]
	Folie 69: System Use Case [OW]
	Folie 70: Zusammenhang der Use Case Arten
	Folie 71: Wege zur Use Case-Ermittlung
	Folie 72: Darstellungsbeispiel: Business-Netzwerk
	Folie 73: Systematische Use-Case Ermittlung (1/4)
	Folie 74: Systematische Use-Case Ermittlung (2/4)
	Folie 75: Systematische Use-Case Ermittlung (3/4)
	Folie 76: Systematische Use-Case Ermittlung (4/4)
	Folie 77: Abgeleitetes Use Case-Diagramm
	Folie 78: Use Case-Erstellung genauer
	Folie 79: Verfeinerung der Use Case-Dokumentation
	Folie 80: Dokumentationsschablone für Use Cases (1/3)
	Folie 81: Dokumentationsschablone für Use Cases (2/3)
	Folie 82: Dokumentationsschablone für Use Cases (3/3)
	Folie 83: Beispielbeschreibung (1/2)
	Folie 84: Beispielbeschreibung (2/2)
	Folie 85: Hinweise zu Use Cases (1/2)
	Folie 86: Hinweise zu Use Cases (2/2)
	Folie 87: Analyse von Use-Case-Dokumentationen
	Folie 88: Beispiel zu <<include>>
	Folie 89: <<extend>>
	Folie 90: Hinweis zu <<include>>, <<extend>> (persönlich)
	Folie 91: weiteres Use Case – Diagramm: Online-Autobörse
	Folie 92: Beschreibung verschiedener Abläufe
	Folie 93: Modellierungsrichtlinie für Aktivitätsdiagramme
	Folie 94: Aktivitätsdiagramm mit typischen Ablauf
	Folie 95: Aktivitätsdiagramm um Alternativen ergänzt
	Folie 96: Erinnerung: Modellierung aus Business-Sicht
	Folie 97: Modellierung aus System-Sicht
	Folie 98: n+1 Aktivitätsdiagramme (1/2)
	Folie 99: n+1 Aktivitätsdiagramme (2/2)
	Folie 100: Formulierung von Anforderungen
	Folie 101: Sprache als Darstellungsmittel
	Folie 102: Glossar
	Folie 103: Probleme mit natürlich-sprachlichen Formulierungen
	Folie 104: Definition: Tilgung
	Folie 105: Beispiele für Tilgungen (1/2)
	Folie 106: Beispiele für Tilgungen (2/2)
	Folie 107: Definition: Generalisierung
	Folie 108: Generalisierung durch Universalquantoren
	Folie 109: Beispiele für Generalisierungen
	Folie 110: Definition: Verzerrung
	Folie 111: Verzerrung: Beispiele und Analyse
	Folie 112: Verzerrung durch Nominalisierung
	Folie 113: Erkennen von Nominalisierungen
	Folie 114: Entwicklung strukturierter Anforderungen
	Folie 115: Charakterisierung von Systemaktivitäten
	Folie 116: Visualisierung der Systemaktivitäten
	Folie 117: Anforderungsformulierung (Rupp-Schablone)
	Folie 118: Typ 1: Selbständige Systemaktivität
	Folie 119: Typ 2: Nutzungsinteraktion
	Folie 120: Typ 3: Schnittstellenanforderung
	Folie 121: Vom Aktivitätsdiagramm zur textuellen Anforderung
	Folie 122: Beispielübersetzung (Fragment)
	Folie 123: Nicht-funktionale Anforderungen (1/2) [sehr kurz]
	Folie 124: Nicht-Funktionale Anforderungen (2/2)
	Folie 125: Varianten der Anforderungsermittlung (1/3)
	Folie 126: Varianten der Anforderungsermittlung (2/3)
	Folie 127: Varianten der Anforderungsermittlung (3/3)
	Folie 128: Lastenheft / Pflichtenheft
	Folie 129: Lastenheft / Pflichtenheft: möglicher Aufbau
	Folie 130
	Folie 131: Systemarchitektur
	Folie 132: Klassenmodellierung für OO-Programmier*innen
	Folie 133: Modellierungsaufgabe
	Folie 134: Erinnerung: Java-Grundregeln für Klassen
	Folie 135: Klasse Mitarbeitend (1/3)
	Folie 136: Klasse Mitarbeitend (2/3)
	Folie 137: Klasse Mitarbeitend (3/3)
	Folie 138: Inkrementelle Entwicklung mit UML
	Folie 139: Dynamische Modellierung mit Sequenzdiagrammen
	Folie 140: Algorithmen mit Sequenzdiagrammen
	Folie 141: Zusammenhang: Programm und Sequenzdiagramm
	Folie 142: Mitarbeitend-Objekt hat Sammlung von Fähigkeiten
	Folie 143: Sammlungen in Klassendiagrammen
	Folie 144: Assoziation genauer
	Folie 145: neues Mitarbeitend-Objekt mit Faehigkeiten
	Folie 146: neues Mitarbeiten-Objekt mit Faehigkeiten - genauer
	Folie 147: Wer erstellt Mitarbeitend-Objekte
	Folie 148: MitarbeitendController in Java (1/2)
	Folie 149: MitarbeitendController in Java (2/2)
	Folie 150: Modellierung: MitarbeitendController
	Folie 151: Mitarbeitend-Objekt mit Fähigkeiten anlegen
	Folie 152: Einschub: Programmzeilen des Grauens
	Folie 153: Projekte mit beliebig vielen Mitarbeitend-Objekten
	Folie 154: Design-Entscheidung über Modellierung hinaus
	Folie 155: Jedes Projekt kann einen Scrum-Master haben
	Folie 156: ProjektController
	Folie 157: neues Projekt mit Master erzeugen
	Folie 158: Erweiterung: Mitarbeitend-Objekt anteilig zuordnen
	Folie 159: Standardlösung: Koppelentität
	Folie 160: Mitarbeitend-Objekt zum Projekt hinzufuegen
	Folie 161: Zwischenstand zum Zoomen
	Folie 162: Flexibilisierung mit Interfaces
	Folie 163: Interface in UML
	Folie 164: Teilimplementierung
	Folie 165: Zwischenfazit
	Folie 166: Beispiel für Design-Idee (1/5)
	Folie 167: Beispiel für Design-Idee (2/5)
	Folie 168: Beispiel für Design-Idee (3/5)
	Folie 169: Beispiel für Design-Idee (4/5)
	Folie 170: Beispiel für Design-Idee (5/5)
	Folie 171: Typisches Sequenzdiagramm
	Folie 172: Beispiel: Initialisierung
	Folie 173: Beispiel: Anstoß der Funktionalität
	Folie 174: Beispiel: Projektstrukturplan
	Folie 175: Erste Iteration: Klassen finden
	Folie 176: Analyse der Anforderungen – Ausschnitt 1. Iteration
	Folie 177: UML-Notation
	Folie 178: Zusammenhang Klasse und Objekt
	Folie 179: Tracing-Information (was wo) festhalten
	Folie 180: UML unterstützt iteratives Vorgehen
	Folie 181: 2. Iteration: Methoden suchen
	Folie 182: Beispiel: zweite Analyse der Anforderungen
	Folie 183: Klassendiagramm
	Folie 184: Vererbung
	Folie 185: Beispiel: Vererbung
	Folie 186: Klassen: von Analyse zum Design
	Folie 187: Validierung mit Sequenzdiagrammen
	Folie 188: Darstellungsvarianten in Sequenzdiagrammen
	Folie 189: Iterative Entwicklung und Validierung
	Folie 190: Zusammenhang zwischen Aktivitäts- und Sequenzdiagrammen
	Folie 191: Iterative Entwicklung eines Sequenzdiagramms
	Folie 192: Highlevel-Sequenzdiagramme (nur Ausblick)
	Folie 193: Beispiel: Fertigstellungsgrad berechnen
	Folie 194: Beispiel: Prüfung Aufwandsänderung Projektaufgabe
	Folie 195: Sequenzdiagramm – Detailgrad (1/3)
	Folie 196: Sequenzdiagramm – Detailgrad (2/3)
	Folie 197: Sequenzdiagramm – Detailgrad (3/3)
	Folie 198: Sequenzdiagramm und Kommunikationsdiagramm
	Folie 199: GUI-Modellierung
	Folie 200: Erweiterung mit Boundary-Klassen
	Folie 201: Sequenzdiagramm mit Nutzungsdialog
	Folie 202: Anforderungsverfolgung
	Folie 203: Anforderungsverfolgung - Beispielzusammenhänge
	Folie 204
	Folie 205: Analyse des Ist-Standes
	Folie 206: UML-Toolsuiten / CASE-Werkzeuge
	Folie 207: Übersetzung einfacher Diagramme (1/4)
	Folie 208: Übersetzung einfacher Diagramme (2/4)
	Folie 209: Übersetzung einfacher Diagramme (3/4)
	Folie 210: Übersetzung einfacher Diagramme (4/4)
	Folie 211: Notwendige Code-Ergänzung durch Entwicklung
	Folie 212: Umgang mit Assoziationen im Design
	Folie 213: Multiplizität 1
	Folie 214: Multiplizität n (1/2)
	Folie 215: Multiplizität n (2/2)
	Folie 216: Collections in UML
	Folie 217: Collections in der Programmierung
	Folie 218: Qualifizierte Assoziationen
	Folie 219: Arten der Zugehörigkeit (Aggregation 1/2)
	Folie 220: Arten der Zugehörigkeit (Aggregation 2/2)
	Folie 221: Arten der Zugehörigkeit (Komposition 1/2)
	Folie 222: Arten der Zugehörigkeit (Komposition 2/2)
	Folie 223: Kurzzeitige Klassennutzungen
	Folie 224: Erstellen einer Softwarearchitektur
	Folie 225: Systematische Entwicklung komplexer Systeme
	Folie 226: Typische 3-Schichten-SW-Architektur
	Folie 227: Beispiel: grobe Paketierung (eine Variante)
	Folie 228: Beispiel: grobe Paketierung (zweite Variante)
	Folie 229: Forderung: azyklische Abhängigkeitsstruktur
	Folie 230: Umsetzung von Paketen in Java und C++
	Folie 231: Paketnamen und Strukturierungsmöglichkeiten
	Folie 232: Paketabhängigkeiten optimieren
	Folie 233: Trick: Abhängigkeit umdrehen
	Folie 234: Architektursichten
	Folie 235: 4+1 Sichten
	Folie 236: 4+1 Sichten mit (Teilen der) UML
	Folie 237: Ablaufsicht
	Folie 238: Implementierungssicht
	Folie 239: Komponentendiagramm
	Folie 240: Physische Sicht: vorgegebene HW mit Vernetzung
	Folie 241: Java Module (1/7)
	Folie 242: Java Module (2/7) – Modul Deskriptor module-info.java
	Folie 243: Java Module (3/7) – Beispiel Klassendiagramm
	Folie 244: Java Module (4/7) – in Eclipse
	Folie 245: Java Module (5/7) – Modul-Deskriptoren
	Folie 246: Java Module (6/7) – Module Arten
	Folie 247: Java Module (7/7) – kritische Analyse
	Folie 248
	Folie 249: Zentrale Aufgabe: von Analyse zum Design (1/2)
	Folie 250: Zentrale Aufgabe: von Analyse zum Design (2/2)
	Folie 251: Einschub: Coding-Guidelines
	Folie 252: Einfache Basisregeln
	Folie 253: Keine allwissenden Klassen
	Folie 254: „Verpacken“ von Exemplarvariablen (Aggregation)
	Folie 255: Erinnerung: Bedeutung von Schnittstellen
	Folie 256: zentrale Folie: Design by Contract
	Folie 257: Grundidee von Design-Pattern
	Folie 258: Model-View-Controller
	Folie 259: MVC – einfacher Kommunikationsablauf
	Folie 260: MVC: was bei mehreren Views
	Folie 261: MVC: mehrere Views
	Folie 262: MVC: Model hält Sammlung angeschlossener Views
	Folie 263: MVC: Model hält Sammlung angeschlossener Views
	Folie 264: Java-Beispiel zum MVC (1/7)
	Folie 265: Java-Beispiel zum MVC (2/7)
	Folie 266: Java-Beispiel zum MVC (3/7)
	Folie 267: Java-Beispiel zum MVC (4/7)
	Folie 268: Java-Beispiel zum MVC (5/7)
	Folie 269: Java-Beispiel zum MVC (6/7)
	Folie 270: Java-Beispiel zum MVC (7/7)
	Folie 271: Mehrere Views – mehrere Controller – ein Model
	Folie 272: Pattern-Varianten
	Folie 273: Ablaufvariante: Controller managt alles
	Folie 274: Variante der Ablaufvariante: Controller managt alles
	Folie 275: MVC als Design-Konzept
	Folie 276: Ansatz Observer-Observable
	Folie 277: Beobachter (Observer – Observable)
	Folie 278: Beobachter – Beispielaufgabe (1/5)
	Folie 279: Beobachter – Beispielaufgabe (2/5)
	Folie 280: Beobachter – Beispielaufgabe (3/5)
	Folie 281: Beobachter – Beispielaufgabe (4/5)
	Folie 282: Beobachter – Beispielaufgabe (5/5)
	Folie 283: Pattern und Varianten
	Folie 284: Adapter - Problem
	Folie 285: Adapter - Lösung
	Folie 286: Fassade nach außen
	Folie 287: Einsatzmöglichkeiten von Sichtbarkeiten
	Folie 288: Singleton (1/3)
	Folie 289: Singleton (2/3)
	Folie 290: Singleton (3/3)
	Folie 291: Decorator (1/9)
	Folie 292: Decorator (2/9)
	Folie 293: Decorator (3/9)
	Folie 294: Decorator (4/9)
	Folie 295: Decorator (5/9)
	Folie 296: Decorator (6/9)
	Folie 297: Decorator (7/9) – etwas mehr Effekt (1/2)
	Folie 298: Decorator (8/9) – etwas mehr Effekt (2/2)
	Folie 299: Decorator (9/9) – sind verknüpfbar
	Folie 300: Proxy
	Folie 301: Proxy – Implementierungsmöglichkeit (1/3)
	Folie 302: Proxy – Implementierungsmöglichkeit (2/3)
	Folie 303: Proxy – Implementierungsmöglichkeit (3/3)
	Folie 304: Proxy, Decorator – Verwandt, aber anderer Einsatz (1/2)
	Folie 305: Proxy, Decorator – Verwandt, aber anderer Einsatz (2/2)
	Folie 306: Strategy - Problem
	Folie 307: Strategy - Lösungsbeispiel
	Folie 308: State-Pattern (eine eigene Variante)
	Folie 309: State-Pattern – Implementierungsauszug (1/3)
	Folie 310: State-Pattern – Implementierungsauszug (2/3)
	Folie 311: State-Pattern – Implementierungsauszug (3/3)
	Folie 312: Umsetzung klassischer endlicher Automaten
	Folie 313: Command-Pattern
	Folie 314: Bild aus der Literatur
	Folie 315: Beispiel 1/13 : Rechner 1/2
	Folie 316: Beispiel 2/13 : Rechner 2/2
	Folie 317: Beispiel 3/13 : Klassischer Dialog 1/2
	Folie 318: Beispiel 4/13 : Klassischer Dialog 2/2
	Folie 319: Beispiel 5/13 : Funktioniert immerhin
	Folie 320: Beispiel 6/13 : Ansatz: Steuerungsklassen
	Folie 321: Beispiel 7/13 : Pattern-Nutzung
	Folie 322: Beispiel 8/13 : Umsetzung 1/3
	Folie 323: Beispiel 9/13 : Umsetzung 2/3 (Varianten -> Praktikum)
	Folie 324: Beispiel 10/13 : Umsetzung 3/3
	Folie 325: Beispiel 11/13 : Undo
	Folie 326: Beispiel 12/13 : Variante Undo-Methode
	Folie 327: Beispiel 13/13 : Variante Undo-Objekte (Skizze)
	Folie 328: Fazit Command-Pattern
	Folie 329: Visitor Pattern (1/5) - Idee
	Folie 330: Visitor Pattern (2/5) - Ansatz
	Folie 331: Visitor Pattern (3/5) - Umsetzung
	Folie 332: Visitor Pattern (4/5) - Nutzung
	Folie 333: Visitor Pattern (5/5) - Diskussion
	Folie 334: Verantwortlichkeitsmuster – GRASP-Pattern
	Folie 335: Muster: Experte
	Folie 336: Beispiel: Expert (Fachwissen)
	Folie 337: Muster: Creator
	Folie 338: Beispiel: Creator (1/2)
	Folie 339: Beispiel: Creator (2/2)
	Folie 340: Muster: Geringe Kopplung
	Folie 341: Beispiel: Geringe Kopplung (1/2)
	Folie 342: Beispiel: Geringe Kopplung (2/2)
	Folie 343: Muster: hoher Zusammenhalt
	Folie 344: Beispiel: hoher Zusammenhalt
	Folie 345: Muster: Don’t Talk to Strangers
	Folie 346: Konkretisierung: Don’t Talk to Strangers
	Folie 347: Muster: Reines Kunstgebilde
	Folie 348: Beispiel: Reines Kunstgebilde
	Folie 349: Muster: Command-Query Separation
	Folie 350: Beispiel: Command-Query Separation
	Folie 351: Method Chaining (1/3)
	Folie 352: Method Chaining (2/3)
	Folie 353: Method Chaining (3/3)
	Folie 354: Beispiel: Hilfsklasse Objekterzeugung (1/4)
	Folie 355: Beispiel: Hilfsklasse Objekterzeugung (2/4)
	Folie 356: Beispiel: Hilfsklasse Objekterzeugung (3/4)
	Folie 357: Beispiel: Hilfsklasse Objekterzeugung (4/4)
	Folie 358: Erinnerung: clone(), Erzeugung echter Kopien (1/4)
	Folie 359: Erinnerung: clone(), Erzeugung echter Kopien (2/4)
	Folie 360: Erinnerung: clone(), Erzeugung echter Kopien (3/4)
	Folie 361: Erinnerung: clone(), Erzeugung echter Kopien (4/4)
	Folie 362: Kombination von Pattern: Beispiel Redux
	Folie 363: Redux – Konzept Version 0 (1/2)
	Folie 364: Redux – Konzept Version 0 (2/2)
	Folie 365: Redux – Konzept Version 1 (1/12)
	Folie 366: Redux – Konzept Version 1 (2/12)
	Folie 367: Redux – Konzept Version 1 (3/12)
	Folie 368: Redux – Konzept Version 1 (4/12)
	Folie 369: Redux – Konzept Version 1 (5/12) – App (1/2)
	Folie 370: Redux – Konzept Version 1 (6/12) – App (2/2)
	Folie 371: Redux – Konzept Version 1 (7/12)
	Folie 372: Redux – Konzept Version 1 (8/12)
	Folie 373: Redux – Konzept Version 1 (9/12)
	Folie 374: Redux – Konzept Version 1 (10/12)
	Folie 375: Redux – Konzept Version 1 (11/12)
	Folie 376: Redux – Konzept Version 1 (12/12)
	Folie 377: Redux – Konzept Version 2 (1/11)
	Folie 378: Redux – Konzept Version 2 (2/11)
	Folie 379: Redux – Konzept Version 2 (3/11)
	Folie 380: Redux – Konzept Version 2 (4/11)
	Folie 381: Redux – Konzept Version 2 (5/11)
	Folie 382: Redux – Konzept Version 2 (6/11)
	Folie 383: Redux – Konzept Version 2 (7/11)
	Folie 384: Redux – Konzept Version 2 (8/11)
	Folie 385: Redux – Konzept Version 2 (9/11)
	Folie 386: Redux – Konzept Version 2 (10/11)
	Folie 387: Redux – Konzept Version 2 (11/11)
	Folie 388: Redux – Konzept Version 3 (1/4)
	Folie 389: Redux – Konzept Version 3 (2/4)
	Folie 390: Redux – Konzept Version 3 (3/4)
	Folie 391: Redux – Konzept Version 3 (4/4)
	Folie 392: Redux – Fazit
	Folie 393: Beschreibung der Pattern
	Folie 394: GoF-Pattern Übersicht (nicht auswendig lernen)
	Folie 395: Pattern in der UML
	Folie 396: Kritische Betrachtung von Pattern
	Folie 397: Patternorientierte Konzepte in der Programmierung
	Folie 398: Java 8 – Functional Interfaces (1/3)
	Folie 399: Java 8 – Functional Interfaces (2/3) – mit Lambda
	Folie 400: Java 8 – Functional Interfaces (3/3) – mit Lambda
	Folie 401: Optional (1/5)
	Folie 402: Optional (2/5) – Problem mit null (1/2)
	Folie 403: Optional (3/5) – Problem mit null (2/2)
	Folie 404: Optional (4/5) – Problemlösung (1/2)
	Folie 405: Optional (5/5) – Problemlösung (2/2)
	Folie 406: Streams ab Java 8
	Folie 407: Streams (1/14): POJO-Klasse (1/2)
	Folie 408: Streams (2/14): POJO-Klasse (2/2)
	Folie 409: Streams (3/14): Ausführungsrahmen
	Folie 410: Streams (4/14): Erzeugung und einfache Nutzung
	Folie 411: Streams (5/14): Lambda - Beispiele
	Folie 412: Streams (6/14): Möglichkeit zur Parallelisierung
	Folie 413: Streams (7/14): Filterung
	Folie 414: Streams (8/14): Filterung genauer (Einschub)
	Folie 415: Streams (9/14): Abbildung / Umwandlung (map)
	Folie 416: Streams (10/14): Detailanalyse
	Folie 417: Streams (11/14): Lazy Evaluation
	Folie 418: Streams (12/14): Zusammenfassung (reduce)
	Folie 419: Streams (13/14): Gruppierung
	Folie 420: Streams (14/14): viele weitere Möglichkeiten
	Folie 421: Dependency Injection
	Folie 422: Dependency Injection - Beispiel
	Folie 423: CDI – Minibeispiel (1/4)
	Folie 424: CDI – Minibeispiel (2/4)
	Folie 425: CDI – Minibeispiel (3/4)
	Folie 426: CDI – Minibeispiel (4/4)
	Folie 427: Java Module (1/5) – Services – Beispiel für Strategy
	Folie 428: Java Module (2/5) - Beispiel
	Folie 429: Java Module (3/5) – module-info.java Dateien
	Folie 430: Java Module (4/5) - Nutzung
	Folie 431: Java Module (5/5) – Variante Factory
	Folie 432: Nutzung von Komponenten
	Folie 433: Validierungs-Framework (Bean Validation 1.1, JSR 349)
	Folie 434: Beispielnutzung der Validierung
	Folie 435: Persistenz-Framework (JPA 2.1, JSR 338)
	Folie 436: Beispielnutzung der Persistenz
	Folie 437
	Folie 438: Verfeinerte Modellierung
	Folie 439: Zustandsdiagramme
	Folie 440: Struktur von Zustandsdiagrammen
	Folie 441: Beispiel: Zustandsdiagramm eines Projekts
	Folie 442: Hierarchische Zustände
	Folie 443: Parallele Unterzustände
	Folie 444: Beispiel: Uhr
	Folie 445: Zustandsmodellierung und Realzeitsysteme
	Folie 446: Event [Condition] / Action
	Folie 447: Microsteps und Macrosteps (1/2)
	Folie 448: Microsteps und Macrosteps (2/2)
	Folie 449: Beispiel: Start-Stopp-Automatik (1/4)
	Folie 450: Beispiel: Start-Stopp-Automatik (2/4)
	Folie 451: Beispiel: Start-Stopp-Automatik (3/4)
	Folie 452: Beispiel: Start-Stopp-Automatik (4/4)
	Folie 453: Umsetzung von Zustandsdiagrammen
	Folie 454: GUI als Zustandsautomat
	Folie 455: Android als Zustandsdiagramm
	Folie 456: Klassendiagramm und versteckte Randbedingungen
	Folie 457: Grundidee von Object Constraint Language (OCL)
	Folie 458: Einfache Bedingungen für Objekte (Invarianten)
	Folie 459: Vor- und Nachbedingungen für Methoden
	Folie 460: Einschub: Basistypen und Operationen
	Folie 461: Zugriff auf Assoziationen
	Folie 462: Assoziationsklassen
	Folie 463: Beispiele: Mengenoperationen (1/2)
	Folie 464: Beispiele: Mengenoperationen (2/2)
	Folie 465
	Folie 466: Beispiel: Rahmenbedingungen für SW-Architektur
	Folie 467: Einfluss nichtfunktionaler Anforderungen
	Folie 468: Rahmenbedingung: verteilte Systeme
	Folie 469: Probleme der Aufrufmechanismen
	Folie 470: Typische Probleme verteilter Systeme
	Folie 471: Beispiel: Varianten von Client-Server-Systemen
	Folie 472: Beispiel: 3-Tier-Architektur
	Folie 473: Nutzung von Programmbibliotheken
	Folie 474: Idee von Komponenten
	Folie 475: Idee der Framework-Technologie
	Folie 476: Ziele komplexere Framework-Ansätze
	Folie 477: Persistente Datenhaltung
	Folie 478: Beispiel: JavaBeans (kleiner Ausschnitt)
	Folie 479: XMLEncoder und XMLDecoder (Ausschnitt)
	Folie 480: Refactoring
	Folie 481: Refactoring – Positives Beispiel
	Folie 482: Refactoring – nicht einfaches Beispiel
	Folie 483: Refactoring – (nicht) einfaches Beispiel in C++
	Folie 484: Domain Specific Languages (DSL)
	Folie 485: DSL Prozesse
	Folie 486: Model Driven Architecture
	Folie 487: Prozess der MDA (Theorie)
	Folie 488: Formaler Hintergrund der MDA
	Folie 489: Model Driven Software Development

