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Objektorientierte Analyse und 
Design

Prof. Dr. Stephan Kleuker

Kernziele:

• Strukturen für erfolgreichen SW-Entwicklungsprozess 
kennen lernen

• Realisierung: Von der Anforderung zur Implementierung

Video

Video

https://youtu.be/QlnyKi42TwM
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• Prof. Dr. Stephan Kleuker, geboren 1967, verheiratet, 2 
Kinder

• seit 1.9.09 an der FH, Professur für Software-Entwicklung 

• vorher 4 Jahre FH Wiesbaden

• davor 3 Jahre an der privaten FH Nordakademie in Elmshorn

• davor 4 ½ Jahre tätig als Systemanalytiker und 
Systemberater in Wilhelmshaven

• s.kleuker@hs-osnabrueck.de, Zoom-Termine kurzfristig per 
E-Mail vereinbar

Ich
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Ablauf

• 2h Vorlesung + 2h Praktikum    =   5 CP

• Praktikum (3er oder 4er Gruppen): 

– Anwesenheit = (Übungsblatt vorliegen + Lösungsversuche 
zum vorherigen Aufgabenblatt + Fragen) 

– 11 Übungsblätter mit insgesamt ca. 100 Punkten   

– Praktikum mit 85 oder mehr Punkten bestanden

• Prüfung: Hausarbeit, 3/4er-Gruppen, Themen s. Webseite

• Folienveranstaltungen sind schnell, bremsen Sie mit Fragen

• steuern Sie Ihr Lerntempo mit den Videos selbst (Pausetaste)

• von Studierenden wird hoher Anteil an Eigenarbeit erwartet

• Melden Sie sich in ILIAS zu VL und Praktikum an, Freischaltung 
sollte erfolgt sein

• Praktikum startet „sofort“ an nächsten geplanten Termin
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Verhaltenscodex

•  Vorlesung bis vorgegebenen Vorlesungsende durcharbeiten; 
sinnvoll eher fertig sein, um früh Fragen stellen zu können

• Folienveranstaltungen sind schnell, bremsen Sie mit der Stopp-
Taste, sehen sie in Gruppen, diskutieren Sie gesehenes, stellen 
Sie Fragen, die noch beantwortet werden sollen

• Fragen zur Vorlesungszeit oder sonst per E-Mail

• von Studierenden wird hoher Anteil an Eigenarbeit erwartet

• spätestens zwei Tage vor der VL liegen abends Unterlagen im 
Netz http://kleuker.iui.hs-osnabrueck.de/index.html 

• Probleme sofort melden

• Wer aussteigt teilt mit warum

http://kleuker.iui.hs-osnabrueck.de/index.html
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Praktikum genauer
• Praktikumsaufgaben müssen jeweils als Ergebnisse im Praktikum 

der Folgewoche vorliegen; diese werden dort abgenommen

• Falls jemand nicht kommt, sind die Ergebnisse per E-Mail 
spätestens am Praktikumstag an den Praktikumsleiter zu 
schicken; werden in der Folgewoche abgenommen

• Aufgaben dürfen in Gruppen von maximal vier (minimal drei) 
Studierenden bearbeitet werden; jeder muss in der Lage sein, 
jedes Gruppenergebnis vorzustellen (gerade auch bei evtl. 
späteren Abnahmen)

• Treten ähnliche Ergebnisse bei mehr als einer Arbeitsgruppe auf, 
werden diese bei allen Arbeitsgruppen gestrichen

• KI-Unterstützung ist zu dokumentieren /was/wo/warum)

• bei Lösungen aus dem Internet oder durch KI ist das Praktikum 
beendet
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Praktikum - Aufgabenbearbeitung

• Bearbeitung in 3er/4er-Gruppen

• sinnvoll: Pairprogramming, zwei Personen an einem Rechner

• Ansatz: eigene Tastatur und Maus mitbringen

USB-Stick 
(lokaler 
Speicher), 
neben Z:

private 
Tastatur 
und Maus 
von Studi
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Veranstaltung im Studienkontext

+ Sie haben Kenntnisse in der OO-Programmierung (C++, Java)

+ [Sie können Datenbanken (Überschneidung bei Modellierung)]

= Sie können erfolgreich an dieser Veranstaltung teilnehmen

+ nächstes Semester: Veranstaltung Software-Engineering Projekt 
(Vorlesungsanteil zur Organisation von SW-Projekten in 
Unternehmen, großes Praktikumsprojekt, 10 CP)
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Skript = Buch

Hinweis:

Aktuelle Bücher des

Springer-Verlags

Können über Web-

Seite der Bibliothek

als PDF legal

heruntergeladen

werden,

Fachdatenbanken 

(DBIS)
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weitere Literatur

Generell lesenswert:

• Jochen Ludewig, Horst Lichter, Software Engineering: 
Grundlagen, Menschen, Prozesse, Techniken, dpunkt.verlag, 
Heidelberg 

• Bernd Oestereich, Axel Scheithauer, Analyse und Design mit 
UML 2.5, Oldenbourg, München

• C. Rupp, S. Queins, B. Zengler, UML 2 glasklar, Hanser, 
München Wien

• Ian Sommerville, Software Engineering, Addison Wesley, 
Boston

• (jeweils aktuellste Auflage)

• Spezialliteratur wird zum jeweiligen  Kapitel genannt
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Werkzeuge

• Programmierung mit Eclipse, Modellierung mit UMLet
http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf 

• UMLet ist (fast) reines Malwerkzeug für verschiedene UML-
Diagrammarten (etwas instabiler unter Linux)

• gibt SEU auf HS-Rechner identisch für zu Hause C:\kleukersSEU; ist 
verpflichtend zu nutzen

• gibt professionellere Werkzeuge, die aber nicht generell frei 
verfügbar sind (jedes Unternehmen kocht hier seinen eigenen 
„Werkzeugbrei“ zusammen)

• Bedeutung der Diagramme im Entwicklungsprozess unterschiedlich 
(„fokussiert auf aktuelle UML-Diagramme“ oder nur „zentrales 
Hilfsmittel für Skizzen“)

http://kleuker.iui.hs-osnabrueck.de/querschnittlich/SEU.pdf
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Inhaltsverzeichnis

2  Prozessmodellierung

1  Motivation von Software-Engineering

3  Vorgehensmodelle

4  Anforderungsanalyse

5  Grobdesign

6  Vom Klassendiagramm zum Programm

8  Optimierung des Designmodells

7  Konkretisierungen im Feindesign

9  Implementierungsaspekte

10  Oberflächengestaltung

11  Qualitätssicherung

12  Umfeld der Software-Entwicklung nächstes

Semester

kurz, genauer 

nächstes Semester

andere Veranstaltung

Wahlfach
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2. Prozessmodellierung

2.1  Unternehmensprozesse

2.2  Prozessmodellierung mit Aktivitätsdiagrammen

Video

Video

https://youtu.be/3YhXjxLy5xI
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Unternehmensführung

Unterstützung

Controlling                           

Vertrieb

Projektmanagement

Umfeld von SW-Projekten

SW-Projekt

2.1
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Prozesse in Unternehmen aus SW-Projektsicht

(Annahme SW ist wichtiges Kernprodukt)

• Unternehmensführung gibt Geschäftsfelder und Strategien vor

• Vertriebsleute müssen potenzielle auftraggebende Firmen 
finden, überzeugen und  Aufträge generieren

• Aufträge führen zu Verträgen, die geprüft werden müssen

• Das Personal für Aufträge muss ausgewählt werden und zur 
Verfügung stehen

• Der Projektablauf muss beobachtet werden, Abweichungen z. 
B. in Zeitplan müssen zu Steuerungsmaßnahmen führen

• Die SW muss realisiert werden
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Rollenbegriff

• Unterschiedliche Menschen arbeiten in verschiedenen Rollen 
zusammen

• Rolle: genaue Aufgabenbeschreibung, mit Verantwortlichkeiten 
(was soll gemacht werden) und Kompetenzen (welche 
Entscheidungen können getroffen werden, z. B. „Arbeit 
anweisen“)

• Mensch kann in einem Unternehmen/Projekt mehrere Rollen 
haben

• Eine Rolle kann von mehreren Menschen besetzt werden

• Beispielrollen: Vertriebsleitung, Vertriebsmitarbeit, 
Projektleitung, mitarbeitende Personen in der 
Anforderungsanalyse, Entwicklung, Qualitätssicherung 
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Prozessbegriff

Prozessbeschreibungen  regeln die Zusammenarbeit verschiedene 
Menschen (genauer Rollen), 

• Was soll in diesem Schritt getan werden?
• Wer ist verantwortlich für die Durchführung des Schritts?
• Wer arbeitet in welcher Rolle in diesem Schritt mit?
• Welche Voraussetzungen müssen erfüllt sein, damit der Schritt 

ausgeführt werden kann?
• Welche Teilschritte werden unter welchen Randbedingungen 

durchgeführt?
• Welche Ergebnisse kann der Schritt abhängig von welchen 

Bedingungen produzieren?
• Welche Hilfsmittel werden in dem Prozessschritt benötigt?
• Welche Randbedingungen müssen berücksichtigt werden?
• Wo wird der Schritt ausgeführt? 
Prozesse sind zu dokumentieren und zu pflegen
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Zur Beschreibung werden folgende elementare Elemente genutzt:

Prozessmodellierung mit Aktivitätsdiagrammen

genau ein Startpunkt

einzelner Prozessschritt (Aktion)

  Kontrollknoten (Entscheidung)

ausgehenden Kanten: Boolesche 
Bedingungen in eckigen Klammern

Kontrollknoten (Zusammenführung)

Endpunkt (Terminierung)

2.2
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Parallelität in Prozessen
• Waagerechter oder senkrechter 

Strich steht für mögliche 
Prozessteilung (ein Pfeil rein, 
mehrere raus) oder 
Zusammenführung (mehrere 
Pfeile rein, ein Pfeil raus)

• Am zusammenführenden Strich 
steht Vereinigungsbedingung, z. 
B. 
– {und}: alle Aktionen 

abgeschlossen
– {oder}: (mindestens) eine 

Aktion abgeschlossen
• UML 1.1 hatte andere 

Restriktionen
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Beteiligte, Produkte, Werkzeuge (optional)

• Beteiligte Personen, Produkte, 
Werkzeuge werden hier als 
einfache Datenobjekte 
modelliert, dabei steht zunächst 
die Objektart und dann die 
genaue Bezeichnung

• In eckigen Klammern kann der 
Zustand eines Objekts 
beschrieben werden

• neben „verantwortlich“ noch 
„mitwirkend“ möglich

• auch Entscheidungen haben 
verantwortliche Personen
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Anmerkungen

• immer erst ohne "Kästen" 
modellieren

• häufig alternative 
Darstellungen für Rollen 
und Werkzeuge

• Variante: nur Ablauf, Rest 
in Textdokumentation

• Buch alte Version: alle 
Linien durchgezogen
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Beispiel: Vertrieb (1/4)

•                          Zu modellieren ist der Vertriebsprozess eines 
Unternehmens, das SW verkauft, die individuell für das 
beauftragende Unternehmen angepasst und erweitert werden kann

• Modelle werden wie SW inkrementell erstellt; zunächst der (bzw. 
ein) typische Ablauf, der dann ergänzt wird

• Typisches Szenario: Mitarbeitende Person des Vertriebs kontaktiert 
potenzielles beauftragendes Unternehmen und arbeitet individuelle 
Wünsche heraus; Fachabteilung erstellt Kostenvoranschlag; 
beauftragendes Unternehmen unterschreibt Vertrag; Projekt geht in 
Prozess Projektdurchführung (nicht modelliert)

• Beteiligt: Vertriebsmitarbeit,  beauftragendes Unternehmen, 
Fachabteilung

• Produkt: Individualwünsche, Kostenvoranschlag, Vertrag
• Aktionen: Unternehmensgespräch, Kostenkalkulation, 

Vertragsverhandlung

Video

Video

https://youtu.be/O2HCdvgs_HI
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Beispiel: Vertrieb (2/4)
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Beispiel: Vertrieb (3/4)

nächster Schritt: Einbau alternativer Abläufe

• Unternehmen ist am Angebot nicht interessiert

• In den Vertragsverhandlungen werden neue 
Rahmenbedingungen formuliert, so dass eine Nachkalkulation 
notwendig wird [nächste Folie]

• Bis zu einem Vertragsvolumen von 20 T€ entscheidet die 
Abteilungsleitung, darüber die Geschäftsleitung ob 
vorliegender Vertrag abgeschlossen werden soll oder 
Nachverhandlungen nötig sind

• Die Fachabteilung hat Nachfragen, die die mitarbeitende 
Person des Vertriebs mit dem potenziell beauftragenden 
Unternehmen klären muss
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Beispiel: Vertrieb (4/4)
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Prozessverfeinerung: Kosten kalkulieren

Anmerkung: Verantwortliche weggelassen, da 
immer „Projektbegleitung der Fachabteilung“
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Modellierungsfalle

• Basierend auf Erfahrungen mit Flussdiagrammen könnte man zu 
folgender Modellierung kommen

• Dies würde nach UML-Semantik bedeuten, dass für die Aktion 
Vertragsverhandlung zwei Kostenvorschläge (initial und 
aktualisiert, zwei eingehende Kanten) vorliegen müssten

• Wenn verschiedenen Wege zu einer Aktion führen sollen, muss 
vor der Aktion ein Zusammenführungs-Kontrollknoten stehen
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Modellierungsvarianten
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Problem Lesbarkeit

• Diagramme können leicht komplex werden

Lösungsmöglichkeiten:

• Verteilung von Diagrammen auf mehrere Seiten mit 
Ankerpunkten

• Verzicht, alle Elemente in einem Diagramm darzustellen (z. B. 
Produkte weglassen; dies nur in der immer zu ergänzenden 
Dokumentation erwähnen)

• Diagramme hierarchisch gestalten; eine Aktion kann durch ein 
gesamtes Aktivitätsdiagramm verfeinert werden, z. B. ist 
„Kosten kalkulieren“ eigener Prozess; dies sollte im Modell 
sichtbar werden
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Problem Abstraktionsgrad

• Frage: Wann nur eine Aktion, wann mehrere Aktionen

• Indikator: Mehrere Aktionen zusammenfassen, wenn 

– nur ein Produkt entsteht, das ausschließlich in diesen Aktionen 
benötigt wird („lokale Variable“) 

– oder diese von nur einer Person/Rolle bearbeitet werden

• Typischerweise Prozesshierarchie:

– Unternehmensebene; d.h. ein Diagramm für jeden Prozess der 
Kern-, Management- und Supportprozesse

– Prozessebene: Verfeinerung des Prozesses, so dass alle nur 
intern sichtbaren Rollen und Produkte sichtbar werden

– Arbeitsprozess: Individuelle Beschreibung der Arbeitsschritte 
einer Rolle für eine/ mehrere Aktionen

• Probleme: Flexibilität und Akzeptanz
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1. Motivation von Software-
Engineering

Video

Video

https://youtu.be/05wDznzSlqE
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Historie des SW-Engineering (1/4)

• Ende 60er
– Bedarf für Softwaretechnik neben der reinen 

Programmierung erstmals voll erkannt  (u. a. NATO Software 
Engineering Conference, Garmisch, 1968)

– Vorher sind zahlreiche große Programmentwicklungen 
(möglich durch verbesserte Hardware) gescheitert 

– Arbeiten von Dijkstra 1968 (u.a. gegen Verwendung von 
GOTO) und Royce 1970 (Software-Lebenszyklus), 
• Top-Down-Entwurf, graphische Veranschaulichungen 

(Nassi-Shneiderman Diagramme)
• Mitte 70er   

– Top-Down-Entwurf für große Programme nicht ausreichend, 
zusätzlich Modularisierung erforderlich

– Entwicklung der Begriffe Abstrakter Datentyp, 
Datenkapselung und Information Hiding
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Historie des SW-Engineering (2/4)

• Ende 70er 
– Bedarf für präzise Definition der Anforderungen an ein 

Softwaresystem, Entstehen von Vorgehensmodellen, z. B.  
Structured Analysis Design Technique (SADT)

• 80er Jahre 
– Vom Compiler zur Entwicklungsumgebung (Editor, 

Compiler, Linker, symbolischer Debugger, Source Code 
Control Systems)

– Weiterentwicklung der Modularisierung und der 
Datenkapselung zur objektorientierten Programmierung

• 90er Jahre 
– Objektorientierte Programmierung nimmt zu (wieder 

ausgehend von der Implementierung)
– Neue Programmiersprache Java (ab Mitte 80er C++)
– Anwendungs-Rahmenwerke (Application Frameworks) zur 

Vereinfachung von Design und – vor allem – 
Programmierung
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Historie des SW-Engineering (3/4)
• 90er Jahre 

– Geeignete Analyse- und Entwurfsmethoden entstehen 
(Coad/Yourdon, Rumbaugh, Booch, Jacobson und andere) 

• 1995 
– Vereinigung mehrerer Ansätze zunächst als Unified Method 

(UM) von Booch und Rumbaugh, dann kommt Jacobson hinzu 
(Use Cases). 

– 3 Amigos definieren die Unified Modeling Language (UML) als 
Quasi-Standard.

• 1997 
– UML in der Version 1.1 bei der OMG (Object Management 

Group) zur Standardisierung eingereicht und angenommen 
– UML ist jedoch keine Entwicklungsmethode (Phasenmodell), 

nur eine Beschreibungssprache
• 1999

– Entwicklungsmethode: Unified Process (UP) und Rational 
Unified Process (RUP) (erste Version)
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Historie des SW-Engineering (4/4)

• Heute

– Vorgehensweisen auf individuelle Projektanforderungen 
abgestimmt

– CASE-Methoden und –Tools orientieren sich an der UML

– Stand 07/2011: UML 2.4.1

– Stand 09/2015: UML 2.5

– Stand 12/2017: UML 2.5.1 (http://www.uml.org/) 

– Aufbauend auf Analyse und Design erzeugen 
Codegeneratoren Programmgerüste

– Haupttätigkeiten bei Softwareentwicklung sind Analyse und 
Design, vieles andere versucht man zu automatisieren (!?)

http://www.uml.org/
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Warum scheitern SW-Projekte (kleine Auswahl)

• Die Software wurde wesentlich zu spät geliefert

• Die Software erfüllt nicht die Wünsche der nutzenden Personen

• Die Software läuft nicht auf den vereinbarten Rechnersystemen, 

sie ist zu langsam oder kommt mit dem Speicher nicht aus

• Die Software kann nicht erweitert werden oder mit anderer 

Software zusammenarbeiten

• …
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Antworten des Software-Engineering

• 1967: Prägung des Begriffs Software-Krise

• Lösungsansätze:

– Programmiersprachen: kontinuierliche Einführung von 
Abstraktion (Datentypen, Funktionen, Modulen, Klassen, 
Bibliotheken, Frameworks)

– Dokumentation: Einheitliche Notationen für 
Entwicklungsergebnisse (UML)

– Entwicklungsprozesse: Aufgabenbeschreibungen, wann was 
wie gemacht wird

– Vorgehensmodelle: Entwicklung passt sich an Bedürfnisse 
der nutzenden/bezahlenden Personen an
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Definitionsversuch Software-Engineering

Zusammenfassend kann man Software-Engineering als die 
Wissenschaft der systematischen Entwicklung von Software, 
beginnend bei den Anforderungen bis zur Abnahme des fertigen 
Produkts und der anschließenden Wartungsphase definieren. Es 
werden etablierte Lösungsansätze für Teilaufgaben 
vorgeschlagen, die häufig kombiniert mit neuen Technologien, 
vor Ihrer Umsetzung auf ihre Anwendbarkeit geprüft werden. 
Das zentrale Mittel zur Dokumentation von Software-
Engineering-Ergebnissen sind UML-Diagramme. 
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3. Vorgehensmodelle

nur kurzer Einblick (       nur als Vorausschau, nicht Teil der VL)

Video

Video

https://youtu.be/N1XIRnDqv2w
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Die Phasen der SW- Entwicklung

• Erhebung und Festlegung des WAS mit 
Rahmenbedingungen

• Klärung der Funktionalität und der 
Systemarchitektur durch erste Modelle

• Detaillierte Ausarbeitung der 
Komponenten, der Schnittstellen, 
Datenstrukturen, des WIE

• Ausprogrammierung der 
Programmiervorgaben in der Zielsprache

• Zusammenbau der Komponenten, 
Nachweis, dass Anforderungen erfüllt 
werden, Auslieferung

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration
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Wasserfallmodell

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Merkmale:

Phasen werden von oben nach unten 

durchlaufen

Vorteile:

- Plan auch für IT-unerfahrene verständlich

- einfache Meilensteinplanung

- lange Zeit häufigste Prozessgrundlage

Nachteile:

- Anforderungen müssen 100%-ig sein

- späte Entwicklungsrisiken werden spät 

erkannt

- Qualität des Design passt sich Zeitplan an

Optimierung:

es ist möglich, in die vorherige Phase zu 

springen
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Prototypische Entwicklung

Merkmale:

- potenzielle Probleme frühzeitig 

identifiziert,

- Lösungsmöglichkeiten im Prototypen 

gefunden, daraus Vorgaben abgeleitet

Vorteile:

-  frühzeitige Risikominimierung

-  schnelles erstes Projektergebnis

Nachteile:

- Anforderungen müssen fast 100%-tig 

sein

-  Prototyp (illegal) in die Entwicklung 

übernommen

-  Endergebnis zu schnell erwartet

Optimierung:

es ist möglich, in die vorherige Phase 

zu springen (auch vorheriges Modell)

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Anforderungs-
analyse

Grobdesign

Feindesign

Implemen-
tierung

Test und 
Integration

Prototyp
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Iterative Entwicklung

Merkmale:
- Erweiterung der Prototypidee; SW wird in 

Iterationen entwickelt
- In jeder Iteration wird System weiter verfeinert
- In ersten Iterationen Schwerpunkt auf Analyse 

und Machbarkeit; später auf Realisierung
große Vorteile:
- dynamische Reaktion auf Risiken
- Teilergebnisse mit auftraggebenden Personen 

diskutierbar
Nachteile im Detail:
- schwierige Projektplanung
- schwierige Vertragssituation
- zu schnelles Endergebnis erwartet (GUI = fertig)
- Anforderungen als beliebig änderbar angesehen

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration
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Fertigstellung mit Iterationen

0% 100%Fertigstellungsgrad

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

1. 2. 3. 4.
Iterationen
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Iterativ Inkrementelle Entwicklung (State of the Art)

Merkmal:

-  Projekt in kleine Teilschritte zerlegt

-  pro Schritt neue Funktionalität  

(Inkrement) + Überarbeitung 

existierender Ergebnisse (Iteration) 

-  n+1-ter Schritt kann Probleme des n-

ten Schritts lösen

Vorteile:

-  siehe „iterativ“

-  flexible Reaktion auf neue funktionale 

Anforderungen

Nachteile:

-  siehe „iterativ“ (etwas verstärkt)

Optimierung/Anpassung:

Anforderungsanalyse am Anfang 

intensiver durchführen

Anforderungsanalyse

Grobdesign

Feindesign

Implementierung

Test und Integration

Bsp.: vier Inkremente
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Agile Methoden – Beispiel Scrum

Scrum-Meeting

Arbeitstag

Sprint Review

Sprint Retrospective Sprint

~21 Arbeitstage

Planung

für Sprint

Product

backlog

Aufgabe 1

Aufgabe 2

...

Sprint

backlog

Teilaufgabe 1

Teilaufgabe 2

...
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4. Anforderungsanalyse

4.1  Stakeholder und Ziele
4.2  Klärung der Hauptfunktionalität (Use Cases)
4.3  Beschreibung typischer und alternativer Abläufe
4.4  Ableitung funktionaler Anforderungen
4.5  Nicht-funktionale Anforderungen
4.6  Lasten- und Pflichtenheft

Literatur:
• [RS] C. Rupp, SOPHIST GROUP, Requirements- Engineering und – Management, Hanser 

Fachbuchverlag
• [OW] B. Oestereich, C. Weiss, C. Schröder, T. Weilkiens, A. Lenhard, Objektorientierte 

Geschäftsprozessmodellierung mit der UML, dpunkt.Verlag

Video

Video

https://youtu.be/VDrwjQXyyjk
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so nicht (1/4): Beispiel-Szenario

Zur Stundenerfassung und Abrechnung werden von den in 
Projekten mitarbeitenden Personen spezielle Excel-Tabellen 
jeden Freitag ausgefüllt und am Montag von der Projektleitung 
bei der Verwaltung abgegeben.

Die zuständige Sachbearbeitung überträgt dann die für den 
Projektüberblick relevanten Daten manuell in ein SAP-System. 
Dieses System generiert automatisch eine Übersicht, aus der 
die Geschäftsführung ablesen kann, ob die Projekte wie 
gewünscht laufen.

Dieser Bericht liegt meist am Freitag der Woche vor. Die 
Bearbeitungszeit ist der Geschäftsführung zu lang, deshalb soll 
der Arbeitsschritt automatisiert werden. 
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so nicht (2/4): Die Projektplanung

• Projekt „Projektberichtsautomatisierung“ (ProAuto) 
beschlossen

• Leiter der hausinternen IT-Abteilung über anstehende Aufgabe 
informiert, er erhält Beschreibung der Excel-Daten und 
gewünschter SAP-Daten

• Leiter stellt fest, dass seine Abteilung Know-how und die 
Kapazität hat Projekt durchzuführen, legt Geschäftsführung 
Projektplan mit Aufwandsschätzung vor

• Geschäftsführung beschließt, Projekt intern durchzuführen, 
kein externes Angebot einzuholen
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so nicht (3/4): Die Schritte zum Projektmisserfolg

•  IT-Abteilung analysiert Excel-
Daten und Daten die in das 
SAP-System eingefügt 
werden können

• Kurz nach dem geschätzten 
Projektende liegt technisch 
saubere Lösung vor, Excel 
wurde um Knopf erweitert; 
Projektleitung kann per
Knopfdruck die Daten nach SAP überspielen

• Vier Wochen nach Einführung wird die Leitung der IT-
Abteilung entlassen, da Daten zwar jeden Montag vorliegen, 
sie aber nicht nutzbar sind; erzürnte Geschäftsleitung hat 
deshalb falsche Entscheidungen getroffen

• Projekt wird an Beratungsfirma neu vergeben

ProAuto
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so nicht (4/4): so doch, Geschäftsprozessanalyse

[
]

[
]

[ ]
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Einschub: Swimlanes (1/2)

• Idee: jede verantwortliche Rolle für mindestens eine Aktion 
bekommt eine Swimlane

• Aktionen werden jeweils in die Swimlane der verantwortlichen 
Rolle eingeordnet

• Swimlanes können horizontal oder vertikal angeordnet werden

• Vorteil: schnelle Übersicht über Verantwortlichkeiten

• Nachteil: recht viel Platz für wenige Aktionen benötigt
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Einschub: Swimlanes (2/2)

Projektleitung Sachbearbeitung

Projektdaten eintragen

sachliche Korrektheit und 
Vollständigkeit der Daten 

prüfen

Projektdatenblatt 
überarbeiten

Projektdatenblatt nach 
SAP übertragen

[Daten nicht ok]

[Daten ok]
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Aufgabe der Anforderungsanalyse

Bestimmung aller Anforderungen an die zu erstellende Software 
bzw. an das zu erstellende DV-System, Anforderungen müssen 

– vollständig,

– notwendig ("WAS statt WIE"), 

– eindeutig und

– richtig ("abgestimmt als Teil einer Zielhierarchie") sein. 

Bemerkung zur Ablauforganisation: Anforderungen müssen nicht 
notwendig in einer Phase vor Beginn des Entwurfs vollständig 
bestimmt werden

4.1
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Probleme mit Anforderungen an große Systeme

• Auftraggebende, nutzende, betreibende Personen etc. sind häufig 
verschiedene Personen, unterschiedliche Personen haben 
teilweise widersprüchliche Anforderungen 

• die Effekte des angestrebten Systems sind schwer vorhersehbar

• Anforderungen ändern sich im Laufe der Entwicklungszeit 

• großer Umfang der Anforderungen 

• komplexe Interaktion mit anderen Systemen

• Erste Aufgabe: Ermittlung der Stakeholder

• Definition: Eine Person, die Einfluss auf die Anforderungen hat, da 
sie vom System betroffen ist  (systembetroffene Person)

• Zweite Aufgabe: Ermittlung der Ziele des Systems
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Checkliste zum Finden von Stakeholdern (1/3) [RS]

• nutzende Personen des Systems
– Die größte und wichtigste Gruppe, liefert Großteil der fachlichen Ziele
– Durchdachtes Auswahlverfahren für die Nutzungsrepräsentanten 

nötig (Vertrauensbasis der gesamten Nutzungsgruppe 
berücksichtigen!)

• Management des auftragnehmenden Unternehmens (wir)
– Gewährleisten die Konformität mit Unternehmenszielen und 

Strategien, sowie der Unternehmensphilosophie
– Sind die Sponsoren!

• Personen mit Entscheidungsgewalt des auftraggebenden Unternehmens 
– Wer ist für die Kaufentscheidung verantwortlich?
– Liefer-Vertrags-Zahlungskonditionen?

• prüfendende, auditierende Personen
– sind für Prüfung, Freigabe und Abnahme notwendig

• entwickelnde Personen
– nennen die technologiespezifischen Ziele

Video

Video

https://youtu.be/BiUSOVVLZPI
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Checkliste zum Finden von Stakeholdern (2/3)

• Wartungs- und Servicepersonal
– Wartung und Service muss unkompliziert und zügig 

durchzuführen sein
– Wichtig bei hohen Stückzahlen

• Produktbeseitigung
– Wichtig, wenn ausgeliefertes Produkt nicht nur Software 

umfasst, Frage der Beseitigung (z.B. Umweltschutz), kann 
enormen Einfluss auf die Zielsetzung einer 
Produktentwicklung haben

• Schulungs- und Trainingspersonal
– Liefern konkrete Anforderungen zur Bedienbarkeit, 

Vermittelbarkeit, Hilfesystem, Dokumentation, 
Erlernbarkeit,

• Marketing und Vertriebsabteilung
– Marketing und Vertrieb als interne Repräsentanten der 

externen Wünsche des Auftraggebers und der 
Marktentwicklung
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Checkliste zum Finden von Stakeholdern (3/3)

• Systemschutz
– stellt Anforderungen zum Schutz vor Fehlverhalten von 

Stakeholdern
• Standards und Gesetze

– vorhandene und zukünftige Standards/Gesetze 
berücksichtigen 

• Person die Projekt oder Produkt ablehnen
– Die Klasse der kritisch eingestellten Personen - vor allem zu 

Beginn des Projekts wenn möglich mit einbeziehen, sonst 
drohen Konflikte

• Kulturkreis
– setzt Rahmenbedingungen, z.B. verwendete Symbolik, 

Begriffe, …
• Meinungsführung und die öffentliche Meinung

– beeinflussen oder schreiben Ziele vor, Zielmärkte 
berücksichtigen
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Regeln für die Definition von Zielen

Hinweis: Ziele sind abstrakte Top-Level-Anforderungen

Ziele müssen
– vollständig,
– korrekt,
– konsistent gegenüber anderen Zielen und in sich 
 konsistent,
– testbar,
– verstehbar für alle Stakeholder,
– umsetzbar — realisierbar,
– notwendig,
– eindeutig und positiv formuliert sein.

Zwei weitere Merkmale:
– Lösungsneutralität
– einschränkende Rahmenbedingungen

Video

Video

https://youtu.be/ubFSodbp6vo
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Schablone zur Zielbeschreibung

Ziel Was soll erreicht werden?

Stakeholder Welche Stakeholder sind in das Ziel involviert? 
Ein Ziel ohne Stakeholder macht keinen Sinn.

Auswirkungen 
auf Stakeholder

Welche Veränderungen werden für die 
Stakeholder erwartet?

Rand-
bedingungen

Welche unveränderlichen Randbedingungen 
müssen bei Zielerreichung beachtet werden?

Abhängigkeiten Ist dieses Ziel mit anderen Zielen unmittelbar 
verknüpft? Dies kann einen positiven Effekt 
haben, indem die Erfüllung von Anforderungen 
zur Erreichung mehrerer Ziele beiträgt. Es ist 
aber auch möglich, dass ein Kompromiss 
gefunden werden muss, da Ziele 
unterschiedliche Schwerpunkte haben.

Sonstiges Was muss organisatorisch beachtet werden?
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Projektbeschreibung

Zu entwickeln ist ein individuell auf die Unternehmenswünsche 
angepasstes Werkzeug zur Projektverwaltung. Dabei sind die 
Arbeitspakete (wer macht wann was) und das Projektcontrolling (wie 
steht das Projekt bzgl. seiner Termine und des Budgets)  zu 
berücksichtigen. Projekte werden zur Zeit ausgehend von 
Projektstrukturplänen geplant und verwaltet.

Projekte können in Teilprojekte zerlegt werden.

Die eigentlichen Arbeiten finden in Arbeitspaketen, auch Aufgaben 
genannt, statt.

Projekte werden von zusammenzustellenden Projektteams bearbeitet, 
die zugehörigen Daten der mitarbeitenden Personen sind zu 
verwalten. Zur Ermittlung des Projektstands tragen mitarbeitende 
Personen ihre Arbeitszeit und den erreichten Fertigstellungsgrad in das 
System ein.
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Ziele für eine Projektmanagementsoftware (1/3)
Ziel 1. Die Software muss die Planung und Analyse aller laufenden 

Projekte ermöglichen

Stakeholder Projektplanung, Projektleitung, mitarbeitende Personen, 
Controlling (alle als Nutzende des Systems)

Auswirkungen 
auf Stakeholder

Projektplanung: Alle Planungsdaten fließen in das neue 
Werkzeug, es gibt sofort eine Übersicht, wer an was, von wann 
bis wann arbeitet.
Projektleitung: Die Projektleitung ist immer über den Stand 
informiert, er weiß, wer an was arbeitet.
mitarbeitende Person: Teammitglieder sind verpflichtet, ihre 
Arbeitsstunden und erreichten Ergebnisse in das Werkzeug 
einzutragen. Sie sehen, für welche Folgearbeiten sie wann 
verplant sind.
Controlling: Hat Überblick über Projektstand.

Rand-
bedingungen

Existierende Datenbestände sollen übernommen werden. Die 
Randbedingungen zur Verarbeitung personalbezogener Daten 
sind zu beachten.

Abhängigkeiten -

Sonstiges Es liegt eine Studie des auftraggebenden Unternehmens vor, 
warum kein Produkt vom Markt zur Realisierung genommen wird.
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Ziele für eine Projektmanagementsoftware (2/3)

Ziel 2. Das auftraggebende Unternehmen soll von der fachlichen 
Kompetenz unseres Unternehmens überzeugt werden.

Stakeholder Management, Entwicklung

Auswirkungen 
auf Stakeholder

Management: Der Projekterfolg hat große Auswirkungen auf 
die nächsten beiden Jahresbilanzen.
Entwicklung: Es werden hohe Anforderungen an die 
Software-Qualität gestellt.

Rand-
bedingungen

Es muss noch geprüft werden, ob langfristig eine für beide 
Seiten lukrative Zusammenarbeit überhaupt möglich ist.

Abhängigkeiten Überschneidung mit dem Ziel 3, da eine Konzentration auf 
die Wünsche des auftraggebenden Unternehmens eventuell 
einer Verwendbarkeit für den allgemeinen Markt 
widersprechen kann.

Sonstiges Das Verhalten des neuen auftraggebenden Unternehmens 
bei Änderungswünschen ist unbekannt.
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Ziele für eine Projektmanagementsoftware (3/3)

Ziel 3. Das neue Produkt soll für einen größeren Markt einsetzbar 
sein.

Stakeholder Management, Vertrieb, Entwicklung, Rechtsabteilung

Auswirkungen 
auf Stakeholder

Management: Es soll eine Marktposition auf dem 
Marktsegment Projektmanagement-Software aufgebaut 
werden.
Vertrieb: In Gesprächen mit potenziell auftraggebenden 
Unternehmen wird das neue Produkt und seine 
Integrationsmöglichkeit mit anderen Produkten ab Projektstart 
beworben.
Entwicklung: Die Software muss modular aufgebaut aus 
Software-Komponenten mit klaren Schnittstellen bestehen.
Rechtsabteilung: Klärung der Lizensierung

Randbedingungen -

Abhängigkeiten zu Ziel 2 (Beschreibung dort)

Sonstiges Eine Analyse der Konkurrenz auf dem Markt liegt vor. Es sind 
Möglichkeiten für neue, den Markt interessierende 
Funktionalitäten aufgezeigt worden.
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Rahmenbedingungen und weiteres Vorgehen

Traceability:

• alle Anforderungen müssen sich auf ein Ziel zurückführen 
lassen 

• alle Ziele benötigen einen Stakeholder (Ökonomie-Check)

Kommunikation:

• die ausgewählten Stakeholder müssen nun detaillierter befragt 
und dauerhaft in das Projekt integriert werden 

Warum der ganze Aufwand:

• Vergessene Ziele und Stakeholder führen zu massiven Change 
Requests

Das eigentliche SW-Projekt kann beginnen.
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Überblick über den Analyseprozess

1. Erfassung der Systemaufgaben mit „Use Cases“

2. Beschreibung der Aufgaben mit  
 Aktivitätsdiagrammen

(optional 3. Formalisierung der Beschreibungen in 
Anforderungen)

4. Aufbau eines tieferen Verständnisses durch 
Klassenmodellierung und Sequenzdiagramme 
(Grobdesign)

iterativer Prozess

4.2

Video

Video

https://youtu.be/O3RuNZN6Kyo
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Erfragung des WAS?

•  Zentrale Frage: 

  Was sind die Hauptaufgaben des Systems?

•  Wer ist an den Aufgaben beteiligt?

•  Welche Schritte gehören zur Aufgabenerfüllung?

  => Aufgaben werden als Use Cases (Anwendungsfälle) 
beschrieben

  => Beteiligte werden als Aktoren festgehalten 
 (können meist aus der Menge der Stakeholder bzw. 

deren Rollen entnommen werden)
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Use Case (Anwendungsfall)

• Use Case beschreibt in der Sprache der Stakeholder, d.h. in 
natürlicher Sprache, eine konsistente und zielgerichtete 
Interaktion der nutzenden Person mit einem System, an deren 
Anfang ein fachlicher Auslöser steht und an deren Ende ein 
definiertes Ergebnis von fachlichem Wert entstanden ist

• Ein Use Case beschreibt das gewünschte externe 
Systemverhalten aus Sicht einer nutzenden Person und somit 
Anforderungen, die das System erfüllen soll

• eine Beschreibung was es leisten muss, aber nicht wie es dies 
leisten soll

• Unterscheidung in Geschäftsanwendungsfall  (business use 
case) formuliert aus Geschäftssicht (z. B. Vertriebsprozess vom 
Anfang) und Systemanwendungsfall (system use case) 
formuliert aus Sicht der durch die neue SW zu lösenden 
Aufgabe
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Business Use Case [OW]

2.1.8 Geschäftsanwendungsfall
• Verwandte Begriffe: engl. business use Case, Geschäftsfall. 
Definition
• Ein Geschäftsanwendungsfall beschreibt einen geschäftlichen 

Ablauf, wird von einem geschäftlichen Ereignis ausgelöst und 
endet mit einem Ergebnis, das für den Unternehmenszweck 
und die Gewinnerzielungsabsicht direkt oder indirekt einen 
geschäftlichen Wert darstellt.

Beschreibung
• Bei einem Geschäftsanwendungsfall wird die Frage nach der 

möglichen systemtechnischen Umsetzung noch nicht gestellt, 
sondern völlig unabhängig davon ganz allgemein aus 
geschäftlicher Sicht beschrieben.

• Beispiel:  Business Use Case „Angebotserstellung“
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System Use Case [OW]

2.1.9 Systemanwendungsfall
• Verwandte Begriffe: engl. System use case
Definition
• Ein Systemanwendungsfall ist ein Anwendungsfall, der speziell 

das für außen stehende Akteure (nutzende Person oder 
Nachbarsysteme) wahrnehmbare Verhalten eines (Hard-
/Software-) Systems beschreibt.

Beschreibung
• Aus UML- und Softwareentwicklungssicht ist der 

Systemanwendungsfall die normale Form eines 
Anwendungsfalles. In Abgrenzung zu den verschiedenen Arten 
von Geschäftsanwendungsfällen beschreibt ein 
Systemanwendungsfall konkret das Verhalten bzw. den 
Arbeitsablauf, wie er durch ein System (z. B. Software) 
unterstützt wird. Dabei wird das äußerlich wahrnehmbare 
Verhalten beschrieben, also was das System macht, aber nicht 
wie es dies tut.
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Zusammenhang der Use Case Arten

• Für ein neu geplantes SW-System wird zunächst analysiert, 
welche Prozesse mit der SW unterstützt werden sollen 
(Geschäftsprozessmodellierung)

• Oft geht mit Modellierung auch eine Optimierung einher
• Man erhält zentrale Aufgaben, die das SW-System übernehmen 

soll (Business Use Case)
• Ausgehend davon werden die Aufgaben geplant, die das SW-

System unterstützen/ausführen soll, dies sind die System Use 
Cases

• Häufig gehört zu einem Business Use Case ein System Use Case, 
d. h. es gibt die gleiche Überschrift, aber eine unterschiedliche 
Beschreibung (im System Use Case steht die Nutzung des neues 
SW-Systems im Mittelpunkt)

• Es kann weitere System Use Cases geben, die z. B. die 
Systemwartung oder neue Analysemöglichkeiten betreffen
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Wege zur Use Case-Ermittlung

• moderierter Workshop zentraler Stakeholder

• Beobachtung der Personen, die das bisherige oder ein 
vergleichbares System nutzen

• Fragebögen

• Interviews

• auftraggebende Person  vor Ort im Projekt

• Analyse von Altsystemen und Dokumenten der 
auftraggebenden Personen

• Simulationsmodelle
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Darstellungsbeispiel: Business-Netzwerk

externe Sicht der 
nutzenden Person auf die 
Aufgaben des Systems

Aktoren können Personen 
oder andere Systeme oder 
interne Auslöser sein

Use Cases können in 
Teilpaketen strukturiert 
werden

das zu entwickelnde 
System tritt nie Aktor auf, 
kann als Kasten um UC 
stehen
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Systematische Use-Case Ermittlung (1/4)

1. Welche Basisinformationen / Objekte sind zu bearbeiten (keine 
Detailmodellierung, keine Informationen, die aus anderen 
berechenbar sind)?

 Beispiel (Projektmanagementsystem): Projekte, mitarbeitende 
Personen
Prüfe ob neues System Basisinformationen verwaltet oder Sie 

aus existierenden Systemen stammen
neues System: Use Case „Basisinformation XY verwalten“ 

gefunden (evtl. in „anlegen“, „bearbeiten“, „löschen“ 
trennen)

existierendes System: tritt als Aktor auf, wenn Daten benötigt
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Systematische Use-Case Ermittlung (2/4)

2. Welche Prozessinformationen sind zu verwalten, also dynamisch 
entstehende Daten, Daten zur Verknüpfung von 
Basisinformationen

 Beispiel: Projektteams, Arbeitsstunden der mitarbeitenden 
Personen 

 Ergänze Use Cases, die die Verknüpfung der Daten herstellen
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Systematische Use-Case Ermittlung (3/4)

3. Ermittle Funktionalität, die auf Basis der Verarbeitung von Basis- 
und Prozessinformationen benötigt wird

 abstrakte Beispiele: Entscheidungsprozesse/ Analyseprozesse 
zur Auswertung (Statistiken, Übersichten)

 Ergänze Use Case für jede der Prozessarten (Art bedeutet, 
Zusammenfassung eng verwandter Funktionalität)
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Systematische Use-Case Ermittlung (4/4)

4. Ermittle Use Cases zur reinen Systempflege insofern es 
besondere Herausforderungen gibt

 abstrakte Beispiele: langfristige Datenhaltung, Systemstart, 
Systemterminierung

 Zeichne Use Case-Diagramm und ergänze Aktoren (z. B. 
Stakeholder, genutzte Systeme, Timer) und Dokumentation
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Abgeleitetes Use Case-Diagramm

Übung

Übung

https://youtu.be/hqc5aA3UFEI
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Use Case-Erstellung genauer

•  Beschreibung eines Use Cases

– zunächst verbal

– relativ abstrakt, wird später verfeinert
•  Leitfragen für die Ermittlung von Aktoren und Prozessen

– Welcher Aktor löst Use Case aus?

– Welche Aktoren sind am Use Case beteiligt?

– Welche Aufgaben sind im Use Case zu erfüllen?

– Wer ist verantwortlich für Planung, Durchführung, Kontrolle der 
Aufgaben?

– Welche Ereignisse starten Use Case, treten im Use Case auf?

– Welche Bedingungen sind zu beachten?

– Was sind die Ergebnisse des Use Cases?

– Welche Beziehungen gibt es zu welchen anderen Use Cases?
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Verfeinerung der Use Case-Dokumentation

• Im ersten Schritt werden in Use Cases nur  Hauptaufgaben des 
Systems beschrieben

• Zur Dokumentation der Use Cases gehört zunächst nur eine 
grobe kurze Beschreibung (maximal 5 Sätze) des Inhalts

• Im nächsten Schritt wird dieser Inhalt konkretisiert. Dabei ist es 
sinnvoll, auf eine Dokumentationsschablone zurück zu greifen 
(oder eine für das Projekt zu entwickeln)

• Im ersten Schritt der Beschreibungsentwicklung wird nur der 
typische Ablauf des Use Cases ohne Alternativen, dann mit 
Alternativen beschrieben  

4.3

Video

Video

https://youtu.be/wqYxTyKDWnM
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Dokumentationsschablone für Use Cases (1/3)

Name des Use 
Case

1 kurze prägnante Beschreibung, meist aus Verb und 
Nomen 

Nummer 1 eindeutige Nummer zur Verwaltung, sollte von der 
eingesetzten Entwicklungsumgebung vergeben 
werden

Paket 2 bei sehr komplexen Systemen können Use Cases in 
Teilaufgabenbereiche zusammengefasst werden, 
diese Bereiche können in der UML als Pakete 
dargestellt werden 

Erstellung 1 wer hat den Use Case erstellt und wer mitgearbeitet

Version 1 aktuelle Versionsnummer, möglichst mit 
Änderungshistorie, wer hat wann was geändert

Kurzbeschrei-
bung

1 kurze Beschreibung, was mit dem Use Case auf 
welchem Weg erreicht werden soll, 

beteiligte 
Aktoren 
(Stakeholder)

1 welche Aktoren sind beteiligt, wer stößt den Use 
Case an
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Dokumentationsschablone für Use Cases (2/3)

Fachverant-
wortlich

1 wer steht auf fachlicher Seite für Fragen zum Use Case zur 
Verfügung und entscheidet auf Auftraggebenderseite für 
die Software über den Inhalt

Referenzen 2 Nennung aller Informationen, die bei der späteren 
Ausimplementierung zu beachten beziehungsweise 
hilfreich sind, können Verweise auf Gesetze, Normen oder 
Dokumentationen existierender Systeme sein 

Vorbedingungen 2 was muss erfüllt sein, damit der Use Case starten kann

Nachbedin-
gungen

2 wie sieht das mögliche Ergebnis aus, im nächsten Schritt 
sind auch die Ergebnisse alternativer Abläufe zu 
berücksichtigen

typischer Ablauf 2 welche einzelnen Schritte werden im Use Case 
durchlaufen, dabei wird nur der gewünschte typische 
Ablauf dokumentiert

alternative 
Abläufe

3 welche Alternativen existieren zum typischen Ablauf
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Dokumentationsschablone für Use Cases (3/3)

Kritikalität 3 wie wichtig ist diese Funktionalität für das 
Gesamtsystem

Verknüpfungen 3 welche Zusammenhänge bestehen zu anderen Use 
Cases

funktionale 
Anforderungen

4 welche konkreten funktionalen Anforderungen 
werden aus diesem Use Case abgeleitet

nicht-
funktionale 
Anforderungen

4 welche konkreten nicht-funktionalen Anforderungen 
werden aus diesem Use Case abgeleitet

• Nummer gibt Iteration an, in der das Feld gefüllt wird
• typischer und alternative Abläufe werden jetzt genauer 

betrachtet
• funktionale und nicht-funktionale Anforderungen weiter 

hinten in diesem Abschnitt
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Beispielbeschreibung (1/2)

Name des Use Case Projektstruktur bearbeiten

Nummer U1

Paket -

Erstellung Achmed Analytiker

Version 1.0, 30.01.2019, Erstellung

Kurzbeschrei-bung Im Projektbüro tätige Personen haben die Möglichkeit, 
Projekte mit Teilprojekten anzulegen und zu 
bearbeiten.

beteiligte Aktoren 
(Stakeholder)

Projektbüro (startet Use Case durch Auswahl der 
Funktionalität im zu erstellenden System)

Fachverantwortlich Lisa Leitung (zentrale Ansprechpartnerin des 
auftraggebenden Unternehmens)

Referenzen Handbuch zur Führung von Projekten des 
auftraggebenden Unternehmens
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Beispielbeschreibung (2/2)

Vorbedingungen Die Software ist vollständig installiert und wurde gestartet.

Nachbedingun-
gen

Neue Projekte und Teilprojekte sowie Änderungen von 
Projekten und Teilprojekten wurden vom System 
übernommen.

typischer Ablauf 1. Nutzende Person wählt Funktionalität zur Bearbeitung 
von Projektstrukturen
2. Nutzende Person legt Projekt mit Projektstandarddaten an
3. Nutzende Person ergänzt neue Teilprojekte
4. Nutzende Person verlässt Funktionalität

alternative 
Abläufe

Die nutzenden Person kann existierendes Projekt auswählen,
Die nutzenden Person kann Daten eines Teilprojekts ändern

Kritikalität sehr hoch, System macht ohne Funktionalität keinen Sinn
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Hinweise zu Use Cases (1/2)

• Verwende für den Use Case eine sinnvolle Bezeichnung, die 
mindestens aus einem echten Substantiv und einem aktiven 
Verb ("Antrag erfassen") oder dem zugehörigen Gerundium 
("Antragserfassung") besteht!

• Definiere zuerst den fachlichen Auslöser und das fachliche 
Ergebnis, um Anfang und Ende des Use Cases festzulegen!

• Formuliere den Use Case so abstrakt wie möglich und so konkret 
wie nötig!

• Betreibe zunächst keine Zerlegung in abgeleitete, sekundäre Use 
Cases!

• Standardisiere die Sprache in den Use Cases!
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Hinweise zu Use Cases (2/2)

• Use Cases eignen sich nicht zur funktionalen Zerlegung, d.h. ein 
Use Case beschreibt keine einzelnen Schritte, Operationen 
oder Transaktionen (bspw. "Vertrag drucken", „Auftrags-Nr. 
erzeugen" etc.), sondern relativ große Abläufe (bspw. "Neuen 
Auftrag aufnehmen")

• Es wird keine Ablaufreihenfolge definiert, hierzu gibt es andere 
Ausdrucksmittel, z.B. Aktivitätsdiagramme

• Use Cases belassen das Sprachmonopol beim Stakeholder, 
wodurch die Use Cases angreifbarer und besser kritisierbar 
werden

• Bereits hier sinnvoll: Glossar anlegen (Begriffe und Prozesses 
definieren)
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Analyse von Use-Case-Dokumentationen

• es kann passieren, dass identische Abläufe mehrfach 
beschrieben werden

• diese (nicht trivialen) Abläufe können als eigene Use Cases 
ausgegliedert werden; man sagt dann „ein Use Case nutzt 
einen anderen Use Case“

• UML-Darstellung:

• In spitzen <<Klammern>> stehen sogenannte Stereotypen, mit 
denen man UML-Elementen zusätzliche Eigenschaften 
zuordnen kann

A B
<<include>>
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Beispiel zu <<include>>
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<<extend>>

• Seltene Variation des erweiterten Use Cases

• Wird nur unter bestimmter Bedingung ausgeführt, z. B. 
Sonderfall oder Fehlerbehandlung 

• eigentlicher Use Case nicht durch Spezialfälle überfrachtet
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Hinweis zu <<include>>, <<extend>> (persönlich)

• <<include>> ist ein sehr nützlicher Stereotyp, der die 
Dokumentation verkürzen kann

• Gerade bei in der Modellierung unerfahrenen auftraggebenden 
Unternehmen sollte <<include>> zunächst verheimlicht 
werden, da sonst funktionale Zerlegungen in Bäumen das 
Ergebnis sind

• <<include>> wird dann bei der Dokumentation und späteren 
Verfeinerung bei der Umstrukturierung der Use Cases als 
Optimierung eingesetzt

• Hinweis: <<extend>> und weitere nicht erwähnte 
Möglichkeiten werden hier ignoriert, da es auftraggebende 
Unternehmen, genauer Personen ohne IT-Background, eher 
verwirrt
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weiteres Use Case – Diagramm: Online-Autobörse



Prof. Dr. 
Stephan Kleuker   

92OOAD

Beschreibung verschiedener Abläufe

• Bei Projekten mit enger Bindung (z.B. bei engen Beziehungen 
zwischen AG und IT-Abteilung bei Inhouse-Projekten) können 
Use Cases (oder User Stories) als Anforderungsdokumentation 
ausreichen, wenn das Projekt in kleinen Iterationen und der 
Möglichkeit eines großen Einflusses der auftraggebenden 
Partei entwickelt wird

• Oftmals ist die Beschreibung der Use Cases aber zu ungenau, 
gerade bei der Darstellung typischer und Alternativer Abläufe 
stellt sich die rein sprachliche Beschreibung als recht aufwändig 
heraus

• Da die UML eine graphische Sprache ist, stellt sie auch für 
Ablaufbeschreibungen eine grafische Darstellungsmöglichkeit, 
nämlich Aktivitätsdiagramme, zur Verfügung

Video

Video

https://youtu.be/86aZX8jfylY
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Modellierungsrichtlinie für Aktivitätsdiagramme

Modelliere zu jedem Use Case genau ein Aktivitätsdiagramm
• Mache aus den Use Case-Schritten Aktionen
• Zerlege die Aktionen ggfls. mit einem Aktivitätsdiagramm, so 

dass sie stets genau einen fachlichen Arbeitsschritt 
repräsentieren

• Ergänze den Ablauf um alle bekannten fachlichen Ausnahmen, 
fachlichen Fehler und fachlichen Ablaufvarianten, so dass das 
Diagramm eine vollständige Beschreibung aller zulässigen 
Ablaufmöglichkeiten darstellt

(sinnvoll jetzt oder später) Modelliere den Objektfluss:
• Beschreibe zu jeder Aktion die vorausgesetzten (zu 

verarbeitenden) und resultierenden (erzeugten oder 
veränderten) Geschäftsobjekte (Produkte).

• Unterscheide, bei welchen ausgehenden Transitionen bzw. 
Bedingungen welche Objekte bzw. Objektzustände resultieren
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Aktivitätsdiagramm mit typischen Ablauf

Anmerkung: typischer Ablauf ist immer einfache Sequenz von 
Aktionen, Ausnahme wie hier: einfache Schleifen

Use Case: Projektstruktur bearbeiten
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Aktivitätsdiagramm um Alternativen ergänzt  
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Erinnerung: Modellierung aus Business-Sicht
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Modellierung aus System-Sicht
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n+1 Aktivitätsdiagramme (1/2)

• typisch: zu jedem Use Case ein Aktivitätsdiagramm (ggfls. mit 
Verfeinerung)

• Ansatz ausreichend, wenn keine zentrale Steuerung (z. B. 
WebServices)

• Für zentrale Steuerung wird ein zusätzliches 
Aktivitätsdiagramm benötigt, dass diesen Ablauf zeigt (z. B. GUI 
mit Nutzungsauswahl)
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n+1 Aktivitätsdiagramme (2/2)
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Formulierung von Anforderungen

• Analog zu Use Cases sind Aktivitätsdiagramme zu 

dokumentieren: was unter Nutzung welcher Hilfsmittel unter 

Berücksichtigung welcher Nebenbedingungen gilt

• Beschreibungen können oft unvollständig oder unklar 

formuliert sein, sind zu prüfen

• Statt Fließtextdokumentation von Aktivitätsdiagrammen, kann 

eine Darstellung von systematisch abgeleiteten textuellen 

Anforderungen sinnvoll sein

• Man benötigt Ansatz, Texte möglichst präzise zu formulieren

4.4

Video

Video

https://youtu.be/T1ONvFYVKn0
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Sprache als Darstellungsmittel

Formulierte Anforderungen

• sind in natürlicher Sprache verfasst

• gewissen Prozessen bei der Entstehung unterworfen

Entstehungsprozesse

• verändern/verfälschen die beabsichtigte Bedeutung einer 
Anforderung

• hat jeder Mensch,         sind 
regelgeleitet
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Glossar

• Zentrales Hilfsmittel der Anforderungsanalyse
• Aufbau:  Fachbegriff – Erklärung
• Wichtig: Fachbegriff kann auch Halbsatz sein
• Kann detaillierte Erklärungen oder Referenzen auf Fachliteratur 

enthalten
• muss von auftraggebenden und entwickelnden Personen 

verstanden werden

Arbeitspaket Synonym für Projektaufgabe

Projektaufgabe Nicht weiter zerlegte Aufgabe mit 
zugewiesenen Rollen zur Bearbeitung; 
gleiche Ausgangsdaten wie Projekt

Projektausgangs-
daten

automatisch vergebene eindeutige 
Projektnummer, Projektname, geplanter 
Start- und Endtermin, geplanter Aufwand
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Probleme mit natürlich-sprachlichen Formulierungen

• Hauptprozesse der menschlichen Modellbildung

– Tilgung

– Generalisierung

– Verzerrung (z. B. durch Nominalisierung)

• Problem:  Anforderungen werden für Menschen mit anderer 
Modellbildung (da andere Erfahrungen) unsauber formuliert

• In Prosatexten sind Wiederholungen unerwünscht; bei 
Anforderungen müssen immer die gleichen Worte für den 
gleichen Sachverhalt genutzt werden
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Definition: Tilgung

• Tilgung ist ein Prozess, durch den wir unsere Aufmerksamkeit 
selektiv bestimmten Dimensionen unserer Erfahrungen 
zuwenden und andere ausschließen.  (Bandler/Grinder)

• Beispiel: Die Fähigkeit des Menschen, In einem Raum voller 
sprechender Menschen alle anderen Geräusche auszuschließen 
oder auszufiltern, um der Stimme einer bestimmten Person 
zuzuhören.

• problematisch für Anforderungen: implizite Annahmen, 
unvollständige Vergleiche
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Beispiele für Tilgungen (1/2)

• Grundstruktur: Manche Prozessworte (Verben und Prädikate) 
implizieren zwei oder mehr Substantivargumente

• Sprachliche Vertreter

– Eingeben: Wer? Was? Wie? Wo? Wann?

– Anzeigen: Was? Wo? In welcher Weise? Wann?

– Übertragen: Wer? Was? Von wo? Wohin? Wann?

– „Die Auszahlungsmöglichkeit soll überprüft und die 
Auszahlung verbucht werden“

– Überprüfen: Wer überprüft? Was wird überprüft? Nach 
welchen Regeln wird überprüft? Wann wird überprüft? 
Wie?

–  Verbuchen: Wer verbucht? Was wird verbucht? Wann wird 
es verbucht? Wie?
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Beispiele für Tilgungen (2/2)

• Grundstruktur: Der Bezugspunkt. die Messbarkeit und die 
Messgenauigkeit für einen Komparativ oder Superlativ fehlt.

• Sprachliche Vertreter: Adjektiv + Endung "-er/en", "-ste"  oder 
"more", "less", "least", oder "weniger", "mehr"

• In beiden Sprachen: Adjektive wie leicht, easy, schwer, 
complicated, ...

• Für durchschnittlich große Menschen soll das Display im 
normalen Bedienabstand gut lesbar sein.

• Die Eingabe des angeforderten Geldbetrages soll vom System 
durch eine intuitive Nutzungsführung so unterstützt werden, 
dass Fehleingaben minimiert werden.

– Kann man den Sachverhalt überhaupt messen?

– Ist der Bezugspunkt des Vergleiches angegeben?

– Mit welcher Messgenauigkeit wird gemessen?
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Definition: Generalisierung

• Generalisierung ist der Prozess, durch den Elemente oder Teile 
eines persönlichen Modells von der ursprünglichen Erfahrung 
abgelöst werden, um dann die gesamte Kategorie, von der 
diese Erfahrung ein Beispiel darstellt, zu verkörpern. 
(Bendler/Grindler)

• Beispiel: Ein Kind verbrennt sich an einer heißen Herdplatte die 
Hand. Es sollte für sich die richtige Generalisierung aufstellen, 
dass es schmerzhaft ist auf heiße Herdplatten zu fassen.

• problematisch für Anforderungen: Universalquantoren, 
unvollständige Bedingungen



Prof. Dr. 
Stephan Kleuker   

108OOAD

Generalisierung durch Universalquantoren

Universalquantoren

• Grundstruktur: Menge an Objekten wird zusammengefasst

• Sprachliche Vertreter:

– Im Deutschen: nie, immer, kein, jeder, alle, ...

– Im Englischen: never, ever, not, each, always, ...

• Frage:

– Wirklich alle/jede, immer/nie? Gibt es keine Ausnahme?

– Achtung! Auch Sätze ohne Universalquantoren überprüfen, 
die keine Angaben über die Häufigkeit enthalten!
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Beispiele für Generalisierungen

• Jede Auszahlung soll für die Rückverfolgbarkeit zusätzlich mit 
einem Zeitstempel etikettiert werden.

– Wirklich jede Auszahlung?

• Das System soll eine Sicherung von aufgezeichneten 
Auszahlungsdaten auf ein externes Speichermedium 
ermöglichen.

– Durch jede Person? Immer? Aller Auszahlungsdaten? 
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Definition:  Verzerrung

• Verzerrung ist der Prozess, etwas mittels Überlegungen, 
Fantasie oder Wünschen, so umzugestalten, dass ein neuer 
Inhalt oder eine neue Bedeutung entsteht. (Dörrenbacher)

• Beispiel: Behauptung, dass auf A dann B folgt oder 
Gedankenlesen

– Da jemand zu spät ist, ist das Projekt gefährdet

– Ich denke, der mag mich nicht

– Er sollte wissen, wie ich mich jetzt fühle
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Verzerrung: Beispiele und Analyse

• Die nutzende Person muss zunächst sein Login und dann sein 
Passwort eingeben.

• Der nutzenden Person muss am Anfang immer die 
Übersichtsseite gezeigt werden.

• Die nutzende Person muss eingeloggt sein, um die Übersicht zu 
sehen.

• „Das muss genau wie Word aufgebaut sein“

• Was führt zur Annahme, dass diese Reihenfolgen notwendig 
sind?

• Was würde sich bei einer anderen Reihenfolge oder Verlassen 
einer Einschränkung ändern?

• Welche Eigenschaften von Word sind wichtig; warum muss es so 
sein
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Verzerrung durch Nominalisierung

• Grundstruktur: Ein Prozesswort (Verb oder Prädikat) wird zu einem 
Ereigniswort (Substantiv oder Argument) umgeformt.

• Dadurch wird ein Vorgang zu einem Ereignis und viele 
vorgangsrelevante Informationen gehen verloren.

• Es ist möglich, dass sich die Bedeutung der Aussage dadurch ändert

– Die Berechtigung für die Administration des Geldautomaten

– Die Auszahlung wird nach der Buchung durchgeführt

– Wer? zahlt wann? Wem? Was? Unter Einhaltung welcher 
Regeln? Mit welcher Zuverlässigkeit? Mit welcher 
Verfügbarkeit?

– Wer? bucht wann? Was? Wohin? Unter Einhaltung welcher 
Regeln? Mit welcher Zuverlässigkeit? Mit welcher 
Verfügbarkeit?
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Erkennen von Nominalisierungen

Fragen/Vorgehen:

• Intuition, Sprachgefühl

• Suche nach ähnlichem Prozesswort

• Sprachtest durch Einsetzen in "ein(e) andauernde(r) …".  Wahre 
Substantive passen nicht in diese Aussage

Beispiele:

• Bei der Auswahl der Auszahlungsfunktion soll die  … 

• der Anzeige, Nutzungsführung, Bestätigung, ....

• die Eingabe, Erfassung, ....

• das Ereignis, die Meldung, ...

• die Buchung, Ausgabe, Prüfung, ....

Anmerkung: Nominalisierung wird oft auch als Tilgung angesehen     
http://nlpportal.org/nlpedia/wiki/Metamodell 

http://nlpportal.org/nlpedia/wiki/Metamodell
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Entwicklung strukturierter Anforderungen

• ein Ansatz zu qualitativ hochwertigen Anforderungen: erste 

Version erstellen und dann Textqualität schrittweise 

verbessern

• Alternative: „von Anfang an“ hochwertige Anforderungen zu 

schreiben

• Dieser Ansatz kann durch Anforderungsschablonen unterstützt 

werden, die den Satzbau von Anforderungen vorgeben 

(vorgestellter Ansatz folgt [RS])

• Man beachte, bereits erwähnte Ausdrucksprobleme auch in 

diesem Ansatz noch relevant 
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Charakterisierung von Systemaktivitäten

• Selbständige Systemaktivität:

 Das System führt den Prozess selbständig durch.

• Nutzungsinteraktion:

 Das System stellt der nutzenden Person die 
Prozessfunktionalität zur Verfügung.

• Schnittstellenanforderung:

 Das System führt einen Prozess in Abhängigkeit von einem 
Dritten (zum Beispiel einem Fremdsystem) aus, ist an sich 
passiv und wartet auf ein externes Ereignis

• Für jede dieser Systemaktivitäten gibt es eine Schablone

• Frage: Werden Systemaktivitäten so in disjunkte Klassen 
aufgeteilt?
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Visualisierung der Systemaktivitäten
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Anforderungsformulierung (Rupp-Schablone)

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das 

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Typ 1: Selbständige Systemaktivität, System führt Prozess selbständig durch, z. B. 
Berechnung des bisherigen Aufwandes eines Projekts durch Abfrage aller 
Teilprojekte und Ergebnisanzeige
Typ 2: Nutzungsinteraktion, System stellt der nutzenden Person die 
Prozessfunktionalität zur Verfügung, z: B. Verfügbarkeit eines Eingabefeldes, um 
den Projektdaten einzugeben
Typ 3: Schnittstellenanforderung, d. h. das System führt einen Prozess in 
Abhängigkeit von einem Dritten (zum Beispiel einem Fremdsystem) aus, ist an 
sich passiv und wartet auf ein externes Ereignis, z. B. Anfrage einer anderen 
Bürosoftware nach einer Übersicht über die laufenden Projekte annehmen 
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Typ 1: Selbständige Systemaktivität

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das 

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Nach Abschluss der Eingabe (mit „Return“-Taste oder 
Bestätigungsknopf) bei der Bearbeitung von Daten muss das 
System neu eingegebene Daten in seine permanente 
Datenhaltung übernehmen.   [„Daten“ im Glossar konkretisieren]
Nach der Eingabe eines neuen Teilprojekts oder einer neuen 
Projektaufgabe und nach der Aktualisierung des Aufwandes 
eines Teilprojekts oder einer neuen Projektaufgabe muss das 
System die Aufwandsangaben auf Plausibilität prüfen. 
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Typ 2: Nutzungsinteraktion

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das 

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

In der Projektbearbeitung muss das System der nutzenden 
Person die Möglichkeit bieten, ein neues Projekt mit 
Projektausgangsdaten anzulegen.
In der Projektbearbeitung muss das System der nutzenden 
Person die Möglichkeit bieten, jedes Projekt auszuwählen. 
Nach der Projektauswahl muss das System der nutzenden 
Person die Möglichkeit bieten, für existierende Projekte neue 
Teilprojekte anzulegen. 
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Typ 3: Schnittstellenanforderung

<Wann?>

<Randbe-

dingung>

muss

soll

wird

das 

System

-

<wem?> die

Möglichkeit

bieten

fähig sein

<Objekt mit

Randbedin-

gung>

<Prozess-

wort>

Typ 1

Typ 3

Typ 2

Nach der Kontaktaufnahme durch die Software „Globalview“ muss 
das System fähig sein, Anfragen nach den Projektnamen, deren 
Gesamtaufwänden und Fertigstellungsgraden anzunehmen.

Beispiel: WebService-Schnittstellen werden so beschrieben

(folgt Typ2: Nach der Annahme der Anfrage … )
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Vom Aktivitätsdiagramm zur textuellen Anforderung

• Jede Aktion wird mit einer Anforderung oder mehreren 
Anforderungen beschrieben

• Jede Entscheidung wird mit einer Anforderung oder mehreren 
Anforderungen beschrieben

• Aus dem Ablauf der zur Aktion oder Entscheidung führt, wird 
der erste Teil der jeweiligen Anforderung („Wann?“) erzeugt

• Hinweis: Anforderungen zum Beispiel stehen im folgenden 
Kapitel
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Beispielübersetzung (Fragment)
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Nicht-funktionale Anforderungen (1/2) [sehr kurz]

• Bisher lag der Schwerpunkt auf funktionalen Anforderungen 
„was muss das System machen“

• technische Anforderungen: 

– Hardwareanforderungen 

– Architekturanforderungen

– Anforderungen an die Programmiersprachen

• Anforderungen an die Benutzungsschnittstelle: 

– Form und Funktion von Ein- und Ausgabe-Geräten

– (gesamter Ergonomie-Bereich)

• Anforderungen an die Dienstqualität: 

– DIN EN ISO 66272 unterteilt die Dienstgüte in die fünf 
Merkmale Zuverlässigkeit, Benutzbarkeit, Effizienz, 
Änderbarkeit und Übertragbarkeit

4.5

Video

Video

https://youtu.be/8--_8Y2GkGc
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Nicht-Funktionale Anforderungen (2/2)

• Anforderungen an sonstige Lieferbestandteile, z. B. 
– Systemhandbücher 
– Installationshandbücher 

• Anforderungen an die Durchführung der Entwicklung und 
Einführung, z. B. 
– Anforderungen an die Vorgehensweise 
– anzuwendende Standards 
– Hilfsmittel (Tools)
– Durchführung von Besprechungen,
– Abnahmetests (fachliche Abnahme, betriebliche Abnahme) 

• rechtlich-vertraglichen Anforderungen,  z. B. 
– Zahlungsmeilensteine
– Vertragsstrafen 
– Umgang mit Änderungen
– Eskalationspfade 
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Varianten der Anforderungsermittlung (1/3)

• Persona: Konkretisierung von Stakeholdern, insbesondere 
nutzenden Personen als konkrete Individuen 

• Bsp.: Lara, 27 Jahre, Wirtschaftsinformatik, 4 Jahre im 
Unternehmen, Projektleiterin, liebt strukturierte 
Vorgehensweisen, mag viele Visualisierungen von 
Zusammenhängen, macht privat einen Origami-Blog, hält als 
Haustier eine Boa

• Persona helfen in der Analyse tätigen Personen manchmal sich 
in konkrete Abläufe und Handlungsweisen einzudenken

• Persona werden gerne in kreativen Bereichen, wie Usability und 
Interaction Design genutzt
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Varianten der Anforderungsermittlung (2/3)

• Epic: Beschreibung typischer Arbeitsabläufe späterer 
nutzenden Personen (klarer Anfang, eindeutiges Ergebnis)

 

-> ähnlich einsetzbar wie Use Cases, können auch 
Aktivitätsdiagrammerstellung unterstützen
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Varianten der Anforderungsermittlung (3/3)

• User Story (u. a. in Extreme Programming): Fokus auf eine von 
einer bestimmen Rolle gewünschten Funktionalität

• abstrakt: Als <Stakeholder in folgender Rolle> möchte ich    
<geforderte Funktionalität> um <gewünschter Nutzen>.

• Als Projektleitung möchte ich den aktuellen Stand an 
verbrauchten Arbeitsstunden der Arbeitspakete kompakt 
überblicken, um zu bewerten, ob aktuelle Planungsziele 
erreicht werden können.

-> User Stories verfeinern Epics und stellen damit Teile von 
Abläufen von Aktivitätsdiagrammen dar

• User Storys sind alternativ/ergänzend zur vorgestellten 
Anforderungsanalyse nutzbar
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Lastenheft / Pflichtenheft

• Lastenheft wird vom auftraggebenden Unternehmen (AG) 
geschrieben
– welche Funktionalität ist gewünscht
– welche Randbedingungen (SW/ HW) gibt es

• Pflichtenheft wird vom auftragnehmenden Unternehmen (AN) 
(Software-Entwicklung) geschrieben
– welche Funktionalität wird realisiert
– auf welcher Hardware läuft das System
– welche SW-Schnittstellen (Versionen) berücksichtigt

• Variante: AG beauftragt AN direkt in Zusammenarbeit 
Pflichtenheft zu erstellen
– ein gemeinsames Heft ist sinnvoll
– Pflichtenheft ist meist (branchenabhängig) zu bezahlen

4.6
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Lastenheft / Pflichtenheft: möglicher Aufbau

0. Administrative Daten: von wem, wann genehmigt, ...
1. Zielbestimmung und Zielgruppen

In welcher Umgebung soll System eingesetzt werden?
Ziele des Systems, welche Stakeholder betroffen?

2. Funktionale Anforderungen
Produktfunktionen (Use Cases, Aktivitätsd., Anforderungen)
Produktschnittstellen (a. GUI-Konzept   b. andere SW)

3. Nichtfunktionale Anforderungen
Qualitätsanforderungen
weitere technische Anforderungen

4. Lieferumfang
5. Abnahmekriterien
6. Anhänge (insbesondere Glossar)
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5. Grobdesign

5.1  Systemarchitektur

5.2  Ableitung von grundlegenden Klassen

5.3  Ableitung von Methoden und Kontrollklassen

5.4  Validierung mit Sequenzdiagrammen

5.5  Überlegungen zur Oberflächenentwicklung

Video

Video

https://youtu.be/w2k1ROtIBUM
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Systemarchitektur

Festlegen der Randbedingungen bzgl. Hardware, Betriebssystem, 
verwendeter Software, zu integrierender Systeme

• Vorgabe der Hardware, die Software muss z. B. auf einer 
Spezialhardware funktionieren 

• Vorgabe des Betriebssystems, die Software muss eventuell mit 
anderer Software auf Systemebene zusammenarbeiten

• Vorgabe der Middleware, die Software wird häufig auf 
verschiedene Prozesse verteilt, die miteinander kommunizieren 
müssen

• Vorgaben zu Schnittstellen und Programmiersprachen, die 
Software soll mit anderer Software kommunizieren und muss 
dabei deren Schnittstellen berücksichtigen

• Vorgaben zum „Persistenz-Framework“, die Daten der zu 
erstellenden Software müssen typischerweise langfristig 
gespeichert werden

5.1
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Klassenmodellierung für OO-Programmier*innen

• Generell soll im Grobdesign eine erste Klassenmodellierung 
stattfinden, die die gesamte geforderte Funktionalität abdeckt

• Hauptaufgabe des Klassenmodells, auch Domain-Model 
genannt, ist damit die Vollständigkeit

• Danach wird Domain-Model im Feindesign in Richtung 
effizienter Programmierung, z. B. mit Hilfe von Design-Pattern, 
optimiert

• in OO erfahrende programmierende Personen (HS OS, 4. 
Semester), können bereits im Domain-Model sinnvolle 
Optimierungen (d. h. Nutzung guter Design-Regeln) vornehmen

• Deshalb werden hier UML-Klassendiagramme und 
Sequenzdiagramme für Personen mit Programmiererfahrung 
vorgestellt

5.2a
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Modellierungsaufgabe

• Es soll eine SW zur Verwaltung von mitarbeitenden Personen 
mit ihren Fähigkeiten erstellt werden.

• Die Software soll Projekte verwalten, denen mitarbeitende 
Personen zugeordnet und ein Scrum Master aus den 
mitarbeitenden Personen zugeordnet werden können.

• Mitarbeitende Personen können in verschiedenen Projekten 
mitarbeiten, dazu wird festgelegt, von wann bis wann sie zu 
welchem Prozentanteil mitarbeiten.

• (Achtung, dies ist keine sinnvolle Anforderungsanalyse)

• wichtiger Hinweis: Die UML und damit Klassendiagramme sind 
programmiersprachenunabhängig, deshalb gibt es auch Teile 
von Java, die nicht in UML (ohne Erweiterungen) darstellbar 
sind [und andersherum]
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Erinnerung: Java-Grundregeln für Klassen

• Klassenname in Einzahl (Nomen oder Nominalisierend: Mitarbeitend)

• Objektvariablen (= Instanzvariablen) sind immer private; bei 
Vererbung auch protected möglich

• gibt immer parameterlosen Konstruktor

• gibt für jede Objektvariable get- und set-Methode

• letzten beiden Regeln werden von vielen Java-Frameworks, auch Java 
selbst bei XML-Nutzung, benötigt

• gibt immer toString()-Methode zur Objektvisualisierung

• gibt (fast) immer equals()- und hashCode()-Methode

• alle genannten Konstruktoren und Methoden sind generierbar

• Sie halten sich an Java-Coding-Guidelines; Einstieg dazu über 
http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf 

http://home.edvsz.hs-osnabrueck.de/skleuker/querschnittlich/CodingGuidelinesUndGlossar.pdf
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Klasse Mitarbeitend (1/3)
public class Mitarbeitend {

  private int id;

  private String name; 

private static int idCount = 1000;

in französischen Anführungsstrichen
stehen optionale Stereotypen; diese 
bietet die UML als Markierungs- und 
Erweiterungsmöglichkeit; sind für 
Klassendiagramme nicht vorgegeben

Klassenname (evtl. Paket davor)

Objektvariaben mit
<Sichtbarkeit> <Name>: <Typ>

Klassenvariablen sind unterstrichen

Startwerte können für alle Variablen
angegeben werden
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Klasse Mitarbeitend (2/3)
public Mitarbeitend() {

    this.id = Mitarbeitend.idCount++;
  }
  

  public Mitarbeitend(String name) {
    this();
    this.name = name;
  }
  

  public int getId() {return id;}

  public void setId(int id) {
    this.id = id;
  }

  public String getName() {
    return this.name;
  }

public void setName(String name) {
    this.name = name;
  }

Konstruktor mit
<Sichtbarkeit> <Name> 
( <Parameterliste> )

Methode mit
<Sichtbarkeit> <Name> 
( <Parameterliste> ), 
optional Parameternamen
angebbar
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Klasse Mitarbeitend (3/3)

public static int wertIdCount() {
    return Mitarbeitend.idCount;
 }
}

Sichtbarkeiten:
+: public
-: private
#: protected
~ : (nicht genau package-protected 
wie in Java)

Rückgabetyp void weglassbar

Klassenmethoden sind unterstrichen
mit <Sichtbarkeit> <Name>                       

( <Parameterliste> )
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Inkrementelle Entwicklung mit UML

• generell können fast alle Informationen weggelassen und 
später ergänzt werden

• wird Klasse in anderen Klassendiagrammen gezeigt, wird auch 
oft nur der Kasten gezeigt
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Dynamische Modellierung mit Sequenzdiagrammen

• Klassendiagramme sind statisch und zeigen „nur“ Aufbau
• Beispielabläufe mit Sequenzdiagrammen darstellbar
• Beispiel: jemand/irgendein Objekt erzeugt Mitarbeitend und 

ändert den Namen

hier stehen Objekte die vor dem Start existieren

Objekt wird neu erstellt, 
immer unterschrichen, 
vor Doppelpunkt kann 
Name stehen

Methodenaufruf (mit Beispielparametern
oder freien Variablennamen)

Ablaufkontrolle geht zurück, 
kann Ergebnis enthalten

Lebenslinie, Zeit vergeht
von oben nach unten
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Algorithmen mit Sequenzdiagrammen

• Sequenzdiagramm zeigt Vertauschen von Namen

diese Objekte
existieren beim
Diagrammstart, 
haben Namen
(hier unnötig)

man kann Pfeilen
immer durchgehend
folgen

“extern” nicht Teil der UML, 
schließt aber Diagramme ab
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Zusammenhang: Programm und Sequenzdiagramm

public class A {
  private B b= new B();
  private C c;
  

  public char mach(int x){
  int t= b.tues(x);
  c= new C(t,t+1);
  return b.yeah(c);
  }
}

public class B {

public int tues(int x){
return x%255;

}

public char yeah(C c){
char e=c.sachA();
return (char) (e+1);

}

}

:A b:B

c:C

mach(42)
tues(42)

new C(42,43)

42

yeah(c)

'U'

sachA()

'V'

'V'

extern
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Mitarbeitend-Objekt hat Sammlung von Fähigkeiten

• Faehigkeit ist Enumeration

• Umsetzung in Java:
 public enum Faehigkeit {

JAVA, C, GO, MASTER, PRODUCTOWNER
 }

• in Mitarbeitend:
 private Set<Faehigkeit> faehigkeiten;

 public void hinzuFaehigkeit(Faehigkeit f) {
   this.faehigkeiten.add(f);
 }
  
  public boolean hatFaehigkeit(Faehigkeit f) {

return this.faehigkeiten.contains(f);
  }

Video

Video

https://youtu.be/lnPfIqENmVs
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Sammlungen in Klassendiagrammen

Aufzählungs-
werte angeben

gerichtete Assoziation, Klasse hat Objektvariable
von Typ anderer Klasse Objektvariable von Mitarbeitend

private faehigkeiten

Multiplizitäten
0 keines
1 genau eines
* beliebig viele
0..1 max. eines
3..* mindestens 3
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Assoziation genauer

• Pfeil gibt an, dass nur Mitarbeitend-Objekte ihre Fähigkeiten 
kennen, nicht anders herum

• ohne Pfeilspitze unterspezifiziert, bzw. bidirektional

• * rechts: zu jedem Mitarbeitend-Objekt gehören beliebig viele 
Faehigkeiten, die in der Variablen faehigkeiten stehen

• * links: jedes Faehigkeits-Objekt kann in beliebig vielen 
Mitarbeitend-Objekten vorkommen (dies sieht man nicht im 
Code, ist aber Teil der Modellierung; ist damit Randbedingung)

• ohne weitere Angaben ist Art der Sammlung bzw. Collection 
(List, Map, Set, MultiSet) unterspezifiziert

• -faehigkeiten steht auf der rechten Seite, nicht in der Mitte!
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neues Mitarbeitend-Objekt mit Faehigkeiten

• in Sequenzdiagrammen nur „wichtige“ Klassen für Verständnis

• deshalb ist HashSet-Objekt hier nicht sichtbar

• meist werden solche Collections weggelassen

• natürlich können alle Objekte eingezeichnet werden
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neues Mitarbeiten-Objekt mit Faehigkeiten - genauer

• hier wurde Set-Objekt zur Veranschaulichung eingetragen

• (werden wir in der Veranstaltung nicht machen)
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Wer erstellt Mitarbeitend-Objekte

• zumindest bei Entitäten soll es nur eine Klasse geben, die 
Objekte erzeugt

• typischerweise Controller- oder Verwaltungsklasse

• Controller ist einzige Möglichkeit für CRUD

• Mitarbeitend-Objekt zu erzeugen (CREATE)

• Mitarbeitend-Objekt (über Schlüssel) zu finden (READ)

• Mitarbeitend-Objekt zu verändern (UPDATE)

• Mitarbeitend-Objekt zu löschen (DELETE)

• alle Veränderungen und Befragungen von Mitarbeitend-
Objekten, hier zu Fähigkeiten, findet über diese Klasse statt

• (ab jetzt get- und set- sowie Java-übliche Methoden 
weggelassen)
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MitarbeitendController in Java (1/2)

public class MitarbeitendController {
  private Map<Integer,Mitarbeitend> mitarbeitende;
  

  public MitarbeitendController() {
    this.mitarbeitende = new HashMap<>();
  }
  

  public int neuMitarbeitend(String name) {
    Mitarbeitend tmp = new Mitarbeitend(name);
    this.mitarbeitende.put(tmp.getId(), tmp);
    return tmp.getId();
  }
  

  public Mitarbeitend findeMitarbeitend(int id) {
return this.mitarbeitende.get(id);

  }

  public Mitarbeitend loescheMitarbeit(int id) {
return this.mitarbeitende.remove(id);

  }
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MitarbeitendController in Java (2/2)
public void aendereMitarbeitend(int id, String name) {

    Mitarbeitend tmp = this.findeMitarbeitend(id);
    if (tmp != null) {
      tmp.setName(name);
    }
  }
    

  public void hinzuFaehigkeit(int id, Faehigkeit f) {
    Mitarbeitend tmp = this.findeMitarbeitend(id);
    if (tmp != null) {
      tmp.hinzuFaehigkeit(f);
    }    
  }
  

  public boolean hatFaehigkeit(int id, Faehigkeit f) {
    Mitarbeitend tmp = this.findeMitarbeitend(id);
    return tmp != null && tmp.hatFaehigkeit(f);  
  }
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Modellierung: MitarbeitendController

“nutzt”-Beziehung
(Klasse kommt im Code 
vor, gibt aber keine 
Objektvariable)

jedes Mitarbeitend in 
genau einem Controller

Objektvariable vom Typ Sammlung in MitarbeitendController
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• typisch: Weiterleitung (Delegation) von Controller-Aufruf an Entität

• Sequenzdiagramme können mit sehr kurzen Fragmenten Sachverhalte 
zeigen; es kann auch sinnvoll sein längere detaillierte Abläufe zu 
visualisieren

Mitarbeitend-Objekt mit Fähigkeiten anlegen
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Einschub: Programmzeilen des Grauens

• Nie, nie Objektvariablen mit get oder find holen und dann 
bearbeiten; Bearbeitung immer durch Controller 

• OP: Herz herausoperieren, an Uni-Klinik schicken, dort Herz 
korrigieren, zurück schicken, Herz wieder einsetzen

    
Mitarbeitend m = mitarbeitendController.findeMitarbeitend(42);
Set<Faehigkeit> sf = m.getFaehigkeiten();
sf.add(Faehigkeit.GO);
m.setFaehigkeiten(sf); // schlecht und ohnehin ueberfluessig 

• wenn Sie sowas sehen, Standardfrage: „Wenn Du gerne 
programmierst, warum lernst Du es nicht“
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Projekte mit beliebig vielen Mitarbeitend-Objekten

• gleiche Objektvariablennamen erlaubt, muss aber nicht sein

• muss nicht alle CRUD-Methoden geben
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Design-Entscheidung über Modellierung hinaus

• Design-Entscheidung: Projekt kennt seine Mitarbeitend-Objekte; 
sollen zu Mitarbeitend-Objekt alle Projekte bestimmt werden, muss 
über alle Projekte iteriert werden

• wenn Projekte von Mitarbeitend-Objekten zu suchen sehr wichtig, 
dann Assoziation umdrehen

• wenn beide Richtungen sehr wichtig, dann bidirektional (möglichst 
vermeiden, da später fehleranfällig; nicht immer vermeidbar)
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Jedes Projekt kann einen Scrum-Master haben

• kann mehrere Assoziationen zwischen zwei Klassen geben

• Erinnerung: existierende Methoden  setMaster() und 
getMaster() nicht mehr angegeben

• Frage wo geprüft wird, ob Mitarbeitend-Objekt Fähigkeit 
„MASTER“ hat, bleibt offen
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ProjektController

nutzt Controller, um zu einer id 
Mitarbeitend-Objekt zu finden

Parameternamen sinnvoll, 
um sie zu unterscheiden
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neues Projekt mit Master erzeugen

später sehen wir, dass auch in Sequenzdiagrammen geprüft 
werden kann, ob m == null gilt
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Erweiterung: Mitarbeitend-Objekt anteilig zuordnen

• Jede mitarbeitende Person arbeitet von einem Datum bis einem 
Datum zu einem bestimmten Prozentanteil in einem Projekt

• weder auf einer, noch auf beiden Seiten macht folgendes Sinn:

• entweder: jede mitarbeitende Person eines Projekts muss zum 
gleichen Datum mit gleichen Anteil starten und beenden

• oder: jedes Projekt einer mitarbeitenden Person muss zum 
gleichen Datum mit gleichen Anteil starten und beenden
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Standardlösung: Koppelentität

• Erinnerung: Übersetzung von M:N-Beziehungen von ER-
Diagrammen in Tabellen

• Achtung: Objektorientierung nutzt keine Fremdschlüssel, 
sondern Referenzen
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Mitarbeitend-Objekt zum Projekt hinzufuegen
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Zwischenstand zum Zoomen
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Flexibilisierung mit Interfaces

• Konzept der bisherigen Controller ok, allerdings bis jetzt rein lokale 
Datenhaltung

• Realität: Daten befinden sich in einer Datenbank

• Controller nutzt Datenbankverbindung, um Entitätsobjekte zu 
verwalten (CRUD)

• DB-Verwaltung wird typischerweise von eigener SW übernommen; 
z. B. objekt-relationale Mapper für relationale Datenbanken

• Java-Standardlösung: JPA (s. Software-Architektur, 5. Semester)

• schön wäre, wenn einfach zwischen verschiedenen Lösungen 
umgeschaltet werden könnte

• Ansatz: nur Methoden spezifizieren (also abstract) und 
verschiedene Implementierungen anbieten
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Interface in UML

Stereotyp <<interface>>
alle Methoden abstract

realisiert-Pfeil, gestrichelt
mit offenen Dreieck als
Pfeilspitze
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Teilimplementierung
Stereotyp <<abstract>> 
für abstrakte Klasse

kursiv (oder <<abstract>>) 
für abstrakte Methode

Vererbungspfeil

alle Methoden angeben, die hier
implementiert/überschrieben werden

Adapter implementiert zwei Methoden, 
die der Controller nicht überschreibt
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Zwischenfazit

• Beispiel zeigt einen systematischen Weg zur Erstellung eines 
Klassendiagramms

• Sequenzdiagramme veranschaulichen die Dynamik, wer was wann 
wo aufruft

• Klassendiagramme entstehen oft an Whiteboards mit vielen Fotos für 
Zwischenergebnisse , wischen, streichen, markieren, …

• Beispiel zeigt eine sinnvolle Lösung, aber weitere Themen

– es gibt Varianten bei den Rückgaben, gerade null ist diskutabel (-> 
Java kennt Optional (später); generell Ergebnisklasse(n) sinnvoll)

– was passiert bei Ausnahmen

– wohin mit Konstanten (z. B. Hilfsklassen, alle können zugreifen)

– …
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Beispiel für Design-Idee (1/5)

Wenn Objektsammlungen benötigt, gibt es häufig eine 
Verwaltungsklasse (hier mal Verwaltung statt engl. Controller):

• kann Objekt anlegen

• kann Objekt mit gegebenem   
 Identifikator suchen

• kann löschen

• …

Video

Video

https://youtu.be/c2t1ljVl1t4
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Beispiel für Design-Idee (2/5)

Objektsammlungen können auch Teil anderer Objekte sein, die 
bieten wieder: anlegen, suchen, ändern, löschen
• Klausur bekommt Studierend und Note um Pruefungsergebnis 

zu erzeugen und dann zu verwalten



Prof. Dr. 
Stephan Kleuker   

168OOAD

Beispiel für Design-Idee (3/5)

Idee fortgesetzt, man beachte zusätzlichen Parameter

• Klausurliste kann Klausur anlegen und verwalten

• Klausurliste kann Klausur mitteilen ein Pruefungsergebnis 
anzulegen



Prof. Dr. 
Stephan Kleuker   

169OOAD

Beispiel für Design-Idee (4/5)

- Klausurlistenverwaltung kann Klausurliste anlegen
- Klausurlistenverwaltung kann Klausurliste mitteilen,
   ein Pruefungsergebnis anzulegen (über Klausur)
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Beispiel für Design-Idee (5/5)

• Ausblick: Objekterzeugung und erstes Prüfungsergebnis

Studierendenverwaltung sv = new Studierendenverwaltung()

sv.neuStudierend(42, "Ronja");

Studierend stud = sv.gibStudierend(42);

KlausurlistenVerwaltung kv = new Klausurlistenverwaltung();

kv.klausurlisteHinzu("WS19", "Inf");

kv.klausurHinzu("WS19", "Inf" ,4711 ,"23.12.15" ,0);

kv.pruefungsergebnisHinzu("WS19", "Inf", 4711, stud ,170);

// letzte Methode intern:

//   kv sucht passende Klausurliste kli für ("WS19", "Inf")

//   kli sucht passende Klausur kla für ("Inf", 4711)

//   kla erzeugt neues Prüfungsergebnis und fügt es kla hinzu
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Typisches Sequenzdiagramm

• Objekte in Kopfzeile existieren (woher uninteressant)
• z. B. Klausur-Objekt hat Methode gibPruefungsergebnis(.,.)
• Parameter konkret (4711) oder abstrakt (stud) angebbar, 

gleiches für Ergebnisse (Rückgabewerte)
• hier interne Methode klausurSuchen(.,.) weggelassen
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Beispiel: Initialisierung

• Anmerkung: Typischerweise 
„befruchten“ sich Entwicklung von 
Klassendiagrammen und 
Sequenzdiagrammmen (Optimierung 
in einem iterativen Prozess)
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Beispiel: Anstoß der Funktionalität

• Ablauf zeigt wieder die konsequente Delegation

• Verwaltung erhält Auftrag, nutzt teile der Parameter Zielobjekt 
zu bestimmen und gibt Aufruf mit restlichen Parametern an 
Zielobjekt weiter
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Beispiel: Projektstrukturplan

5.2 Fallstudie
Projektverwaltung
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Erste Iteration: Klassen finden

• Aktivitätsdiagramme werden durch Anforderungen 
konkretisiert

• Text der Anforderungen ist Grundlage zum Finden erster 
Klassen

• Im Text werden Objekte identifiziert; sind Individuen, die durch 
Eigenschaften (Exemplarvariablen) und angebotene 
Funktionalität charakterisiert werden

• grober Ansatz: Nomen in Anforderungen und Glossar ansehen; 
können Objekte oder Eigenschaften sein

• Adjektive können auf Eigenschaften hindeuten

• Informationen in Klassen gesammelt; Klassen beschreiben 
Struktur, die jedes Objekt hat

• verwandter Begriff: Domain Model   
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Analyse der Anforderungen – Ausschnitt 1. Iteration
A1.1: In der Projektbearbeitung muss das System der nutzenden 

Person die Möglichkeit bieten, ein neues Projekt mit 
Projektausgangsdaten anzulegen.

• Glossar Projektausgangsdaten: automatisch vergebene 
eindeutige Projektnummer, Projektname, geplanter Start- und 
Endtermin, geplanter Aufwand

• gefunden: Klasse Projekt mit Exemplarvariablen 
Projektnummer, Projektname, geplanter Starttermin, geplanter 
Endtermin, geplanter Aufwand

A1.2: Nach Abschluss der Eingabe (mit „Return“-Taste oder 
Bestätigungsknopf) bei der Bearbeitung von Daten muss das 
System neu eingegebene Daten in seine permanente 
Datenhaltung übernehmen.

A1.3: In der Projektbearbeitung muss das System der nutzenden 
Person die Möglichkeit bieten, jedes Projekt auszuwählen.

• gefunden: keine Klassen oder Exemplarvariablen 
(Funktionalität später)
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UML-Notation

• / bedeutet abgeleitet, d. h. kann aus anderen Modelinformationen 
berechnet werden (meist in Modellen weggelassen)
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Zusammenhang Klasse und Objekt

• Objekte lassen sich auch in der UML darstellen
• Kasten mit unterstrichenem „:<Klassenname>“
• vor Doppelpunkt optional Objektname
• Objekte werden nicht im Klassendiagramm dargestellt (aber in 

Sequenzdiagrammen, dann ohne Objektvariablen)
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Tracing-Information (was wo) festhalten

• Zuordnung welche Anforderung wie (ganz, teilweise) 
in welchen UML-Elementen umgesetzt

• (besser in einem Tool oder Text)

A1.1
A1.2
A1.3
A1.4
A1.5
A1.6
A1.7
A1.8
A1.9
A1.10
A1.11
A1.12
A1.13

-aufgaben

*

A1.7
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UML unterstützt iteratives Vorgehen

• UML-Teile weggelassen bzw. ausblenden, abhängig von 
notwendigen bzw. vorhandenen Teilinformationen

• Je implementierungsnäher desto detaillierter
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2. Iteration: Methoden suchen

• Methoden stehen für Funktionalität, die ein Objekt anbietet; 
typisch: Zustand (d. h.) Exemplarvariable ändern, Ergebnis 
basierend auf Exemplarvariablen berechnen

• Ansatz 1: Analysiere Verben im Text
• Ansatz 2: Aus Use Cases lässt sich häufig eine Steuerungsklasse 

(Koordinationsklasse) ableiten
• folgende Anforderungen an die Klassenformulierung müssen 

beachtet werden:
– Klassen übernehmen jeweils eine Aufgabe und besitzen 

genau die zur Durchführung benötigten Methoden und die 
für die Methoden benötigten Exemplarvariablen

– Klassen sollen möglichst wenig andere Klassen kennen, 
wodurch die Schnittstellenanzahl gering gehalten wird

• (Hinweis: unser Projektverwaltungsbeispiel ist datenlastig, 
deshalb wenige Methoden)

5.3
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Beispiel: zweite Analyse der Anforderungen

A1.3: In der Projektbearbeitung muss das System die Möglichkeit bieten, jedes 
Projekt auszuwählen.

• Steuerungsklasse Projektverwaltung 

• Exemplarvariablen: alle Projekte und selektiertes Projekt 

• Projektauswahl ist set-Methode

A1.4: Nach der Projektauswahl muss das System der nutzenden Person die 
Möglichkeit bieten, für existierende Projekte neue Teilprojekte anzulegen.

• Wie bei Mengen von Werten üblich, wird meistens eine add- und eine delete-
Methode gefordert. In diesem Fall nur teilprojektHinzufuegen(Projekt): void

A1.7: Nach der Projektauswahl muss das System der nutzenden Person die 
Möglichkeit bieten, neue Projektaufgaben mit dem Aufgabennamen, dem 
geplanten Start- und Endtermin, dem Arbeitsanteil der mitarbeitenden Person 
und dem geplanten Aufwand zu definieren.

• Projekt hat Methode aufgabeHinzufuegen(Projektaufgabe): void

• Konstruktor Aufgabe(String, Datum, Datum, int, int)
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Klassendiagramm
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Vererbung

• Analysemodell wird auf erste Optimierungen geprüft
• Wenn Objekte verschiedener Klassen große Gemeinsamkeiten 

haben, kann Vererbung genutzt werden
• Variante 1: Abstrakte Klasse mit möglichen Exemplarvariablen, 

einigen implementierten und mindestens einer nicht-
implementierten Methode

• Variante 2: Interface ausschließlich mit abstrakten Methoden 
(haben später noch Bedeutung)

• Vererbung reduziert den Codierungsaufwand
• Vererbung erschwert Wiederverwendung
• Vererbung ist Hilfsmittel nicht Ziel der Objektorientierung
• Liskovsches Prinzip für überschreibende Methoden der 

erbenden Klassen berücksichtigen:
– Vorbedingung gleich oder abschwächen
– Nachbedingungen gleich oder verstärken
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Beispiel: Vererbung

nächster Schritt: Prüfen, wo statt Projekt und Projektaufgabe 
Projektkomponente stehen kann (Abstrahierung)
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Klassen: von Analyse zum Design

• hier steht zunächst Analyseklassenmodell im Vordergrund, dass 
meist nicht genauso implementiert wird

• Klassenmodell wird schrittweise in Richtung „sinnvoll 
programmierbar“ umgebaut

• in „sinnvoll“ gehen Erfahrungen und Randbedingungen ein (z. 
B. Web-Applikation)

• Erfahrungen zum guten Design werden u. a. mit Design-Pattern 
dokumentiert (wichtig, aber später)

• mit Design-Erfahrungen wird erstes Klassenmodell bei 
Erstellung besser (gibt dann nur ein zentrales Klassenmodell)
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Validierung mit Sequenzdiagrammen

• Sequenzdiagramme beschreiben, wie Objekte bei anderen 
Objekten Methoden aufrufen

• Mit Hilfe des erreichten Modells kann man mit 
Sequenzdiagrammen validieren, ob die im Aktivitätsdiagramm 
beschriebenen Abläufe möglich sind

• Sequenzdiagramme in der klassischen Form beschreiben damit 
Beispielabläufe

5.4



Prof. Dr. 
Stephan Kleuker   

188OOAD

Darstellungsvarianten in Sequenzdiagrammen
• rechte Seite zeigt 

verschiedene 
Darstellungsmöglichkeiten 
eines Methodenaufrufs

• Rückgabewerte werden 
weggelassen, wenn nur 
Ablauf wichtig

• Aktivitätsbalken (optional) 
verdeutlicht, dass Objekt 
aktiv ist (rechnet, wartet)

• visualisiert in Klasse 1 die 
Zeile

   y = objekt2.methodex(45,x);

• letzte Variante meist am 
intuitivsten (in VL genutzt 
ohne Aktivitätsbalken)
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Iterative Entwicklung und Validierung

Beispielablauf

• Ableitung von Methodennamen

• Zeichnen eines kleinen Sequenzdiagramms mit dieser 
Methode; feststellen, ob weitere Methoden benötigt 

• Ergänzung von Methodenparametern

• Ergänzung des Sequenzdiagramms um Parameter; feststellen, 
ob weitere Methoden benötigt 

• Falls kein Sequenzdiagramm herleitbar, auf Ursachenforschung 
gehen (Modellfehler?)

• Optimales Ziel: Mögliche Durchläufe durch 
Aktivitätsdiagramme werden abgedeckt

Video

Video

https://youtu.be/ZyjGtpJsdV4
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Zusammenhang zwischen Aktivitäts- und 
Sequenzdiagrammen

für jeden möglichen
Durchlauf durch das 
Aktivitätsdiagramm
wird ein
Sequenzdiagramm, 
evtl. zusammengesetzt, 
erstellt
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Iterative Entwicklung eines Sequenzdiagramms

• generell: zunächst unterspezifiziert, 

• dann Parameter verfeinern

• abstrakter Ablauf (x) oder konkreter 
Beispielablauf (mit  Werten)

• Ergänzung interner Berechnungen, z. 
B. in A  z = this.oh();

• interne Collections meist nicht 
dargestellt

• Darstellung aber möglich, in B:
public void hinzu(C c){

  l.add(c);

}

:A b:B
tues()

z=oh()

tues(x)

tues(42)

l:Set

hinzu(c)

hinzu(c)
add(c)
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Highlevel-Sequenzdiagramme (nur Ausblick)
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Beispiel: Fertigstellungsgrad berechnen
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Beispiel: Prüfung Aufwandsänderung Projektaufgabe
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Sequenzdiagramm – Detailgrad (1/3)

• man kann alle Objekte einzeichnen oder unwichtige weglassen
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Sequenzdiagramm – Detailgrad (2/3)

• man kann alle Objekte einzeichnen oder unwichtige weglassen
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Sequenzdiagramm – Detailgrad (3/3)

• theoretisch: kann man Methoden detailliert zeigen
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Sequenzdiagramm und Kommunikationsdiagramm

• gleiches Ausdrucksvermögen wie einfache Sequenzdiagramme

• Zusammenspiel der Objekte wird deutlicher

• interne Berechnung 2.1, 2.2 (ggfls. 2.1.1, 2.1.1.1)
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GUI-Modellierung

• fachlich hängt Oberfläche (GUI, Graphical User Interface) eng 
mit unterliegendem Geschäftsklassenmodell (bisher behandelt) 
zusammen

• möglicher Ansatz: „Mache alle Modellanteile an der Oberfläche 
sichtbar, die eine nutzende Person ändern oder für dessen 
Inhalte er sich interessieren kann.“

• Variante: mache ersten GUI-Prototyp und halte bei Ein- und 
Ausgaben fest, welche Modellinformationen sichtbar sein 
sollen

• GUI-Prototyp gut mit auftraggebenden Personen diskutierbar

• Hinweis: Thema Softwareergonomie

5.5

Video

Video

https://youtu.be/FQizDJqX69A
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Erweiterung mit Boundary-Klassen
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Sequenzdiagramm mit Nutzungsdialog
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Anforderungsverfolgung

Typische Fragen:

• Werden alle Anforderungen umgesetzt?

• Wo werden Anforderungen umgesetzt?

• Gibt es Spezifikationsanteile, die nicht aus Anforderungen 
abgeleitet sind?

• Woher kommt eine Klasse, eine Methode, ein Parameter?

• Was passiert, wenn ich eine Anforderung oder eine Klasse 
ändere?

• Generell werden die Fragen wesentlich komplexer zu 
beantworten, wenn Software später umgebaut oder erweitert 
wird
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Anforderungsverfolgung - Beispielzusammenhänge
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6. Vom Klassendiagramm zum 
Programm

6.1  CASE-Werkzeuge

6.2  Übersetzung einzelner Klassen

6.3  Übersetzung von Assoziationen

6.4  Spezielle Arten der Objektzugehörigkeit

6.5  Aufbau einer Software-Architektur

6.6  Weitere Schritte zum lauffähigen Programm

Video

Video

https://youtu.be/MAKu2cshkoo
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Analyse des Ist-Standes

• bekannter Weg: Wünsche des auftraggebenden 
Unternehmens, Anforderungsformulierung, Analyse-Modell

• Analysemodell kann realisiert werden, aber:

– Klassen kaum für Wiederverwendung geeignet

– Programme meist nur aufwändig erweiterbar

– viele unterschiedliche Lösungen zu gleichartigen Problemen

• deshalb: fortgeschrittene Designtechniken studieren

• aber: um fortgeschrittenes Design zu verstehen, muss man die 
Umsetzung von Klassendiagrammen in Programme kennen 
(dieses Kapitel)

• aber: um fortgeschrittenes Design zu verstehen, muss man 
einige OO-Programme geschrieben haben
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UML-Toolsuiten / CASE-Werkzeuge

Theorie:
• UML-Werkzeuge unterstützen die automatische Umsetzung von 

Klassendiagrammen in Programmgerüste (Skelette)
• entwickelnde Personen müssen die Gerüste mit Code füllen
• viele Werkzeuge unterstützen Roundtrip-Engineering, d.h. 

Änderungen im Code werden auch zurück in das Designmodell 
übernommen (wenn man Randbedingungen beachtet)

• Roundtrip beinhaltet auch Reverse-Engineering
Praxis:
• sehr gute kommerzielle Werkzeuge; allerdings muss man für 

Effizienz Suite von Werkzeugen nutzen; d. h. auf deren 
Entwicklungsweg einlassen

• ordentliche nicht kommerzielle Ansätze für Teilgebiete; allerdings 
Verknüpfung von Werkzeugen wird aufwändig

6.1
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Übersetzung einfacher Diagramme (1/4)

Anmerkung: auch 
bei Realisierung 
kann vereinbart 
werden, dass get- 
und set-Methoden 
in Übersichten 
weggelassen (und 
damit als gegeben 
angenommen) 
werden

Klassenmethoden 
sind unterstrichen

6.2
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Übersetzung einfacher Diagramme (2/4)
public class Mitarbeitend {
 /**
  * @uml.property  name="minr"
  */
 private int minr;
 /**
  * Getter of the property <tt>minr</tt>
  * @return  Returns the minr.
  * @uml.property  name="minr"
  */
 public int getMinr() {
  return minr;
 }
 /**
  * Setter of the property <tt>minr</tt>
  * @param minr  The minr to set.
  * @uml.property  name="minr"
  */
 public void setMinr(int minr) {
  this.minr = minr;
 }
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private String vorname = "";

  public String getVorname() { 

     return vorname;

  }

  public void setVorname(String vorname) {

    this.vorname = vorname;

  }
 

  private String nachname = "";

  public String getNachname() {

    return nachname;

  }

  public void setNachname(String nachname) {

  this.nachname = nachname;

  }

 

Übersetzung einfacher Diagramme (3/4)
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private static int mitarbeitendzaehler;

 

 public static int getMitarbeitendzaehler() {

  return Mitarbeitend.mitarbeitendzaehler;

 }

 public static void setMitarbeitendzaehler

                             (int mitarbeitendzaehler) {

  Mitarbeitend.mitarbeitendzaehler 

                             = mitarbeitendzaehler;

 }

}

Übersetzung einfacher Diagramme (4/4)

= evtl. notwendige Korrekturen, bei CASE-Werkzeug
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Notwendige Code-Ergänzung durch Entwicklung

public Mitarbeitend(String vorname, String nachname){

 this.vorname = vorname;

 this.nachname = nachname;

 this.minr = Mitarbeitend.mitarbeitendzaehler++;

}

@Override

public String toString() {

 return minr + ": " + this.vorname + " " + this.nachname;

}

= von entwickelnden Personen ergänzt
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Umgang mit Assoziationen im Design

• Assoziationen zunächst nur Strich mit Namen (und 
Multiplizitäten)

• für Implementierung jede Assoziation konkretisieren (Richtung 
der Navigierbarkeit, Multiplizitäten sind Pflicht)

public class Projektaufgabe {
  /** werkzeugspezifische Kommentare weggelassen 
   */
  private Mitarbeitend bearbeitend;
  public Mitarbeitend getBearbeitend() {
    return this.bearbeitend;
  }
  public void setBearbeitend(Mitarbeitend bearbeitend) {
    this.bearbeitend = bearbeitend;
  }
}

6.3

Video

Video

https://youtu.be/xqs52kw87Cc
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Multiplizität 1

• Objekreferenz darf nie null sein

private Mitarbeitend bearbeitend = new Mitarbeitend();

• oder im Konstruktor setzen

• man sieht, default-Konstruktoren sind auch hier hilfreich; 
deshalb, wenn irgendwie möglich definieren

• Gleiche Problematik mit der Werte-Existenz, bei Multiplizität 
1..n
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Multiplizität n (1/2)
• Umsetzung als Collection (Sammlung, Container)

• Umsetzung hängt von Art der Collection ab
– sollen Daten geordnet sein
– sind doppelte erlaubt
– gibt es spezielle Zuordnung key -> value

• entwickelnde Person muss zur Typwahl spätere Nutzung kennen
• eine Umsetzung für 1..* 

import java.util.List;
import java.util.ArrayList;
public class Projektaufgabe {
private List<Mitarbeitend> bearbeitend = new ArrayList<>();

• bitte, bitte in Java nicht alles mit ArrayList realisieren (!!!)
• Multiplizität 0..7 als Array umsetzbar
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Multiplizität n (2/2)

• Zum Codefragment der letzten Zeile passt besser folgendes 
Klassendiagramm

• Hinweis: Standardhilfsklassen z. B. aus der Java-
Klassenbibliothek oder der C++-STL werden typischerweise in 
Klassendiagrammen nicht aufgeführt

• Anmerkung: man sieht die UML-Notation für generische (oder 
parametrisierte) Klassen

• UML-Werkzeuge unterscheiden sich bei der Generierung und 
beim Reverse-Engineering beim Umgang mit Collections

*
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Collections in UML 

• Constraints (Randbedingungen) stehen in geschweiften 
Klammern (weitere Möglichkeiten -> Object Constraint 
Language, OCL)

• unique: eindeutig, nur einmal

• ordered: geordnet, sortiert oder Reihenfolge beibehaltend

• unique:  Set

• ordered: List

• notunique, unordered: MultiSet

• Default ohne Angabe ist: {unique, unordered}
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Collections in der Programmierung

• Jede OO-Programmiersprache hat große Sammlung an 
Umsetzungen von Collections

• UML lässt meist trotz Constraints verschiedene Umsetzungen 
zu

• Java: Beispielumsetzungen für Set

– HashSet: generell recht schnelles Einfügen und Löschen

– TreeSet: garantiert log(n) für Basisfunktionalität, nutzt 
Ordnung der Elemente (Interface Comparable<>) 

– LinkedSet: behält beim Iterieren die Reihenfolge der 
Eintragungen ein (ordered)

– org.apache.commons.collections.list.SetUniqueList: Liste 
mit eindeutigen (unique) Einträgen

– …
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Qualifizierte Assoziationen

• qualifizierendes Attribut als Teil der Assoziation angegeben

• steht typischerweise für Map (Dictionary)

private Map<Integer,Studierend> studierende

• zu jeder der Vorlesung bekannten Matrikelnummer gehört 
genau ein Studierend-Objekt

• andere Multiplizitäten (0..1, *) möglich
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Arten der Zugehörigkeit (Aggregation 1/2)
• nicht exklusiver Teil eines Objekts (Mitarbeitend-Objekt kann bei 

mehreren Projektaufgaben bearbeitende Person sein)

in C++:   Mitarbeitend *bearbeitend;
 Mitarbeitend* Projektaufgabe::getBearbeitend(){ 
      return bearbeitend;}

 oder Mitarbeitend bearbeitend;
 Mitarbeitend& Projektaufgabe::getBearbeitend(){ 
      return bearbeitend;}

Realisierungsproblem: Projektaufgabe kann Namen der 
bearbeitenden Person ändern    
 bearbeitend->setNachname("Meier");

• Kann als Verstoß gegen Kapselung (Geheimnisprinzip) 
angesehen werden

• Designansatz: Klasse erhält Interface, die Methoden enthält, die 
bestimmte andere Klassen nutzen können

6.4
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Arten der Zugehörigkeit (Aggregation 2/2)

• Designansatz: Verhindern unerwünschten Zugriffs durch 
Interface (generell gute Idee !)

Kurzdarstellung
Interfacerealisierer:
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Arten der Zugehörigkeit (Komposition 1/2)

• Konkretisierung der Zugehörigkeit: existenzabhängiges Teil, 
Exemplarvariable gehört ausschließlich zum Objekt (Mitarbeitend-
Objekt kann [unrealistisch] nur exakt eine Projektaufgabe 
bearbeiten; niemand anderes nutzt dieses Objekt)

• Realisierung in C++
Mitarbeitend bearbeitend;

Mitarbeitend Projektaufgabe::getBearbeitend (){

  return bearbeitend;

}

• Bei Rückgabe wird Kopie des Objekts erstellt und zurückgegeben
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Arten der Zugehörigkeit (Komposition 2/2)

• Java arbeitet nur mit Referenzen (unschöne Ausnahme sind 
Elementartypen), wie realisiert man

 
 @Override  // in Mitarbeitend.java
 public Mitarbeitend clone(){ // echte Kopie
  Mitarbeitend ergebnis = new Mitarbeitend();
  ergebnis.minr = minr;
  ergebnis.nachname = nachname; //Strings sind
  ergebnis.vorname = vorname;   //Konstanten
  return ergebnis;
 }
 

      // in Projektaufgabe
 public Mitarbeitend getBearbeitend() {
  return this.bearbeitend.clone();
 }

• Variante: bei Realisierung überall doll aufpassen
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Kurzzeitige Klassennutzungen
• Klassen nutzen andere Klassen nicht nur für Exemplar- (und 

Klassen-) Variablen
• Klassen erzeugen Objekte anderer Klassen lokal in Methoden, um 

diese weiter zu reichen
public class Projektverwaltung {
 private Projekt selektiertesProjekt;
 public void projektaufgabeErgaenzen(String name){
  Projektaufgabe pa = new Projektaufgabe(name);
  selektiertesProjekt.aufgabeHinzufuegen(pa);
 }

• Klassen nutzen Klassenmethoden anderer Klassen
• In der UML gibt es hierfür den „Nutzt“-Pfeil 

• Wenn zu viele Pfeile im Diagramm, dann mehrere Diagramme mit 
gleichen Klassen zu unterschiedlichen Themen

• UML-Werkzeuge unterstützen Analyse von Abhängigkeiten
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Erstellen einer Softwarearchitektur

• Ziel des Design ist ein Modell, welches das Analysemodell 
vollständig unter Berücksichtigung 
implementierungsspezifischer Randbedingungen umsetzt

• allgemeine Randbedingungen: Es gibt ingenieurmäßige 
Erfahrungen zum gutem Aufbau eines Klassensystems; dieses 
wird auch SW-Architektur genannt 

• Ziele für die Architektur

– Performance

– Wartbarkeit

– Erweiterbarkeit

– Verständlichkeit

– schnell realisierbar

– Minimierung von Risiken

6.5
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Systematische Entwicklung komplexer Systeme

• Für große Systeme entstehen viele Klassen; bei guten Entwurf: 

• Klassen die eng zusammenhängen (gemeinsame 
Aufgabengebiete)  

• Klassen, die nicht oder nur schwach zusammenhängen 
(Verknüpfung von Aufgabengebieten)

• Strukturierung durch SW-Pakete; Pakete können wieder Pakete 
enthalten
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Typische 3-Schichten-SW-Architektur
• Ziel: Klassen eines oberen Pakets greifen 

nur auf Klassen eines unteren Paketes zu 
(UML-“nutzt“-Pfeil)

• Änderungen der oberen Schicht 
beeinflussen untere Schichten nicht

• Analysemodell liefert typischerweise nur 
Fachklassen

• Datenhaltung steht für Persistenz
• typisch Varianten von 2 bis 5 Schichten
• Klassen in Schicht sollten gleichen 

Abstraktionsgrad haben 
• Schicht in englisch „tier“
• obere und untere Schichten können stark 

von speziellen Anforderungen abhängen 
(später)
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Beispiel: grobe Paketierung (eine Variante)

• Anmerkung: Datenverwaltung noch nicht konzipiert
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Beispiel: grobe Paketierung (zweite Variante)
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Forderung: azyklische Abhängigkeitsstruktur
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Umsetzung von Paketen in Java und C++

package fachklassen.projektdaten;
import fachklassen.projektmitarbeit.Mitarbeitend;
public class Projektaufgabe {
 private Mitarbeitend bearbeitend;
 /* ... */
}

#include "Mitarbeitend.h" //evtl. mit Dateibaum
using namespace Fachklassen::Projektmitarbeit;
namespace Fachklassen{
 namespace Projektdaten{
  class Projektaufgabe{
   private:  
       Mitarbeitend *bearbeitend; // ...
  };
 }
}
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Paketnamen und Strukturierungsmöglichkeiten

• gibt in Programmiersprachen Regeln für Paketnamen

• Beispiel: Firma mit Webseite meineFirma.de

• Paketnamen beginnen immer mit de.meineFirma

• Pakete orientieren sich an Architekturstilen

• Beispiel: Boundary – Control – Entity

• man kann Pakete z. B. auch nach Use Cases ordnen

• Interfaces können in anderen Paketen getrennt von 
Implementierung stehen

• ein oder mehrere Pakete werden in Java als jar-Datei 
ausgeliefert
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Paketabhängigkeiten optimieren

• Ziel ist es, dass Klassen sehr eng zusammenhängen; es weniger 
Klassen gibt, die eng zusammenhängen und viele Klassen und 
Pakete, die nur lose gekoppelt sind

• Möglichst bidirektionale oder zyklische Abhängigkeiten 
vermeiden

• Bei Paketen können Zyklen teilweise durch die Verschiebung 
von Klassen aufgelöst werden

• Wenig globale Pakete (sinnvoll für projektspezifische Typen (z. 
B. Enumerations), Konstanten, Utility-Klassen und Ausnahmen)

• Es gibt viele Designansätze, Abhängigkeiten zu verringern bzw. 
ihre Richtung zu ändern  
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Trick: Abhängigkeit umdrehen

• generell können Interfaces häufiger in anderen Paketen liegen, 
als ihre implementieren Klassen

• Java-Klassenbibliothek Swing fordert häufig die Interface-
Implementierung bei der Ereignisbehandlung

Video

Video

https://youtu.be/oM-jFKsQmZk
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Architektursichten

• Paket- und Klassendiagramme geben einen guten Überblick 
über die Ergebnisse des statischen SW-Entwurfs

• Es gibt aber mehr Sichten (Betrachtungsweisen), die für eine 
vollständige SW-Architektur relevant sind

• z. B. wurde die HW des zu entwickelnden Systems noch nicht 
berücksichtigt

• Diese Sichten müssen zu einem System führen; deshalb müssen  
sich Sichten überlappen

• z. B. eigenes Diagramm mit Übersicht über eingesetzte 
Hardware und Vernetzung; dazu Information, welche SW wo 
laufen soll

6.6
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Logische Sicht

- funktionale Ana-

  lyseergebnisse

- Klassenmodell

4+1 Sichten

Ablaufsicht

- Prozesse

- Nebenläufigkeit

- Synchronisation

Physische Sicht

- Zielhardware

- Netzwerke

Implementierungs-

 sicht

- Subsysteme

- Schnittstellen

Szenarien
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4+1 Sichten mit (Teilen der) UML

Logische Sicht
- Klassendiagramme
- Paketdiagramme

Ablaufsicht
- Sequenzdiagramme
- Kommunikations-
 diagramme
- Zustandsdiagramme

Physische Sicht

- Deployment-

 diagramme

Implementierungs-

 sicht

- Komponenten-

 diagramme

Szenarien
-Use Case-Diagramme

- Aktivitätsdiagramme



Prof. Dr. 
Stephan Kleuker   

237OOAD

• wichtig für verteilte Systeme; bzw. Systeme, die verteilt (auch 
auf einem Rechner) laufen

• Festlegen der Prozesse

• Festlegen etwaiger Threads

• so genannte aktive Klassen; werden Objekte dieser Klassen 
gestartet, so starten sie als eigenständige Prozesse/Threads

• Prozessverhalten u. a. durch Sequenzdiagramme beschreibbar

• (später etwas mehr; gibt eigenes Modul dazu)

aktivesObjekt:
AktiveKlasse

Ablaufsicht

AktiveKlasse
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Implementierungssicht

• Das Designmodell muss physikalisch realisiert werden; es muss 
eine (ausführbare) Datei entstehen

• Pakete fassen als Komponenten realisiert Klassen zusammen

• häufig werden weitere Dateien benötigt: Bilder, Skripte zur 
Anbindung weiterer Software, Installationsdateien

• Komponenten sind austauschbare Bausteine eines Systems mit 
Schnittstellen für andere Komponenten

• Typisch ist, dass eine Komponente die Übersetzung einer Datei 
ist

• Typisch ist, dass eine Komponente die Übersetzung eines 
Pakets ist; in Java .jar-Datei
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Komponentendiagramm

• Bilder zeigen zwei alternative Darstellungen

• Komponenten bieten 
Schnittstellen(realisierungen) (Kreis) und 
benötigen Schnittstellen(realisierungen) 
(Halbkreis)

• Komponenten können über Schnittstellen in 
Diagrammen verknüpft werden

• in die Komponenten können die zugehörigen 
Klassen eingezeichnet werden

• Ports erlauben den Zugriff auf bestimmten Teil 
der Klassen und Interfaces (nicht im Diagramm)
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Physische Sicht: vorgegebene HW mit Vernetzung

• Einsatz- und Verteilungsdiagramm (deployment diagram)

• Knoten steht für physisch vorhandene Einheit, die über 
Rechenleistung oder/und Speicher verfügt

• <<executable>> (ausführbare Datei) und <<artifact>> (Datei) 
müssen zur HW-Beschreibung nicht angegeben werden
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Java Module (1/7)

• vor Java 9: alle genutzten Bibliotheken (.jar, .zip) im Classpath 
eingebunden

• Klassen und Pakete können doppelt sein oder sich überlappen, 
Auswahl abhängig von Reihenfolgen im Classpath

• neuer Ansatz: Gruppen von Paketen in Modulen vereinigen 

Vorteile:

• keine zirkulären Abhängigkeiten erlaubt, bessere Struktur

• ein Paket kann nur von einem Modul im Module-Path angeboten 
werden (sonst Fehler)

• aus Modulen kann eigene Java-Applikation gebaut werden, die 
nur notwenige Module der JRE enthält (statt immer vollständige 
JRE (oder JDK) auszuliefern)

Nachteile später

Video

Video

https://youtu.be/mr_WBWhS-wk
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Java Module (2/7) – Modul Deskriptor module-info.java

// optionales „open“ ermoeglicht Reflection
open module de.hs-osnabrueck.meinProjekt.modxy {
  // Inhalt fuer alle nutzbar
  exports de.hs-osnabrueck.meinProjekt.paket1;
  
  // Unterpakete, wenn nach aussen sichtbar, sind anzugeben
  exports de.hs-osnabrueck.meinProjekt.paket1.subpaket2;
  
  // explizit festlegbar, welche Module zugreifen duerfen
  exports de.modulSpecial to anderesMod1, de.anderesMod2;

  // benoetigte Module angeben
  requires blubb.anderesModul;
  
  // damit andere genutzte Module dieses Moduls auch nutzen 
  //koennen
  requires transitive blubb.modulInAnderesModulBenoetigt
}
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Java Module (3/7) – Beispiel Klassendiagramm
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Java Module (4/7) – in Eclipse

• jedes Modul als eigenes Projekt

• jedes Modul ein Deskriptor 
modul-info.java

• Module als Jar-Dateien 
exportiert

• Module werden im Module-
Path eingebunden
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Java Module (5/7) – Modul-Deskriptoren

open module guiModul {
  requires listenModul;
}

open module listenModul {
  requires transitive todoModul;
  exports ich.listenpack;
}

open module todoModul {
exports ich.todopack;  // to listenModul, guiModul;

}
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Java Module (6/7) – Module Arten

• Java selbst in Module aufgeteilt, java.base automatisch eingetragen

• weitere Elemente der Java-Bibliothek müssen angegeben werden, z. 
B. requires java.sql;

Application Explict Modules
• Module mit Modul-Deskriptor
• Variante:open, alles für 

Reflection freigegeben

Automatic Modules
• klassische Jars ohne Modul-

Deskriptor
• exportiert alle Pakete
• importiert alle Pakete anderer 

Module

Unnamed Modules
• klassische Jars ohne 

Modul-Deskriptor
• werden zusammen als ein 

Modul angesehen
• exportiert alle Pakete

M
o
d
u
l
e
p
a
t
h

C
l
a
s
s
p
a
t
h

Zugriffe



Prof. Dr. 
Stephan Kleuker   

247OOAD

Java Module (7/7) – kritische Analyse

• ab Java 9 müssen alle Klassen in Modulen enthalten sein

• damit wäre Inkompatibilität mit Java 8 riesig

• Trick: „alte“ Pakete gehören implizit zu einem Default-Modul 
(unnamed module); unklar wie lang diese Lösung existiert; im 
Module-Path werden alte Jars zu automatic modules

• viele Werkzeuge nutzen „Innereien“ der JVM, z. B. Reflection

• z. B. JPA, automatische Generierung und Nutzung von Tabellen 
zu fast beliebigen  Java-Klassen

• diese Nutzung ist per Default in Java 9 ausgeschaltet, muss über 
„open“ ermöglicht werden (auch beim VM-Start konfigurierbar)

• viele Frameworks und Bibliotheken laufen immer (noch) nicht 
mit Java ab Version 9 zusammen

• Fazit: keine klare Empfehlung, neues Projekt mit Modulen zu 
machen
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8. Optimierung des 
Designmodells

8.1  Design im Kleinen

8.2  Model View Controller

8.3  Vorstellung einiger GoF-Pattern

8.4  Abschlussbemerkungen zu Pattern

8.5  Patternorientierte Konzepte in der Programmierung

Video

Video

https://youtu.be/_5qKkidKjDw
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Zentrale Aufgabe: von Analyse zum Design (1/2)

• Analyse der Klassen:

– haben sie klar definierte Aufgabe

– können Klassen vereinigt werden

– sollten Klassen aufgeteilt werden

– welche Optimierungen sind aus Design-Sicht möglich? 
(zentrale Frage, untersuchen wir weiter)

• Exemplar- und Klassenvariablen müssen Typen haben

• Variablen und Methoden brauchen Sichtbarkeiten

• Methoden brauchen Rückgabe- und Parametertypen 
(Signaturen); in Java und C++ spielen Ausnahmen eine Rolle
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Zentrale Aufgabe: von Analyse zum Design (2/2)

• für Assoziationen

– Multiplizitäten beachten

– über mögliche Richtungen nachdenken

– Art der Zugehörigkeit klären

• GUI-Klassen und persistente Datenhaltung einbauen

• Anmerkung 1: Übergang von Analyse zu Design ist durch 
Iterationen (Verfeinerungen) fließend

• Anmerkung 2: Die vorgestellten Regeln sind häufig 90-10 
Regeln (in 90% müssen sie angewandt werden, bei Verstößen 
muss man argumentieren können, warum)
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Einschub: Coding-Guidelines

• sehr wichtiges Hilfsmittel, damit alle Code lesen können

• auf den Folien wird für Kompaktheit teilweise drauf verzichtet

Praktikum: minimale Regeln

• Alle Imports ausschreiben  import java.util.*

• Eine Variante von Einrückungen (Eclipse-Stil)

• Objektvariablen und Objektmethoden vorne mit this.
public int getMatnr() {

  return this.matnr;

}

• Bei if und Schleifen immer Block mit geschweiften Klammern

• Keine Klasse im Default-Package („ganz oben“)

• Alle Namen sind intuitiv lesbar für andere Leute

• Pro Zeile nur ein Befehl

• Java-übliche CamelCase-Notation
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Einfache Basisregeln

• KISS = Keep It Simple Stupid, man soll die einfachst mögliche 
Realisierung wählen, die das Problem vollständig löst und gut 
nachvollziehbar ist (kein „Quick and Dirty“, sondern eine klare 
Entscheidung für einen einfachen Entwicklungsstil)

• YAGNI = You Ain’t Gonna Need It, keine Verallgemeinerungen 
entwickeln, die das Design für theoretisch in der Zukunft 
vielleicht gewünschte Erweiterungen vereinfachen

8.1
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Keine allwissenden Klassen

ändere Fertigstellungsgrad einer Projektaufgabe

besser:
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„Verpacken“ von Exemplarvariablen (Aggregation)

• Generell kann man für Exemplarvariablen vom Typ X statt einer 
get-Methode alle Methoden von X anbieten, die man an die 
Exemplarvariable weiterleiten will.

• Ansatz auch für Collections geeignet

• XNutzend: Aufrufe an x weiterleiten  
(Methoden müssen nicht gleich heißen) 

    public int getA(){
      return this.x.getA();
    }
    public void setA(int a){
      this.x.setA(a);
    }
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Erinnerung: Bedeutung von Schnittstellen
• Schnittstellen sind zentrales Element des Design by Contract
• vorgegebene Aufgabe: Implementiere mir folgende 

Funktionalität ... beschrieben durch
– Vorbedingung
– Signatur <Sichtbarkeit> <Methodenname>(<Parameter>)...
– Nachbedingung

• entwickelnde Person realisiert OO-Programm (Details sind frei)
• entwickelnde Person garantiert, dass Schnittstelle (oder 

Fassade) gewünschte Funktionalität liefert
• generell sollte man bei Vererbungen und Implementierungen 

die am wenigsten spezielle benötigte Klasse nutzen; deshalb
  List<Projektaufgaben> aufgaben                   und nicht
  ArrayList<Projektaufgaben> aufgaben    im Code
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• abstrakte Klasse stellt einen Vertrag dar

• Realisierer garantiert die gewünschte Funktionalität

• nutzende Person kann konkretes Objekt mit Funktionalität erhalten

• wie die Realisierung aussieht, ist allein Sache der realisierenden 
Person

zentrale Folie: Design by Contract
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Grundidee von Design-Pattern

Damit nicht alle Klassen eng miteinander gekoppelt sind, gibt es 
Ansätze: 

• die Aufgaben einer Klasse von der Verwaltung der Klassen, die 
Informationen dieser Klasse benötigen, zu trennen

• die Erzeugung von Objekten möglichst flexibel zu gestalten

• Interfaces zur Trennung von Implementierung und angebotenen 
Methoden einzusetzen

• Hierzu werden so genannte Design-Pattern eingesetzt, die für einen 
bestimmten Aufgabentyp eine flexible Lösung vorschlagen

• oft zitiert: E. Gamma, R. Helm, R. Johnson, J. Vlissides, 
Entwurfsmuster, Addison-Wesley, 2004 (Gang of Four [GoF]-Buch, 
hier neuere Auflage) 

8.2
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Model-View-Controller

• Typisch für graphische Oberflächen ist, dass es Objekte zur Eingabe 
gibt, die zur Bearbeitung der eigentlichen Inhaltsklasse führen, die 
dann eventuell zu Änderung der Anzeige führen

• Die Aufteilung in die drei genannten Aufgaben führt zum Model-
View-Controller (MVC)-Ansatz 

• MVC wurde zuerst in Smalltalk Ende der 80'er des vorigen 
Jahrhunderts eingesetzt:

– Model: Zustandsinformation der Komponente (Inhaltsklasse)

– View: Beobachter des Zustands, um diesen darzustellen; es kann 
viele Views geben

– Controller: Legt das Verhalten der Komponente auf 
Benutzungseingaben fest

Video

Video

https://youtu.be/-MRm3WtiXAI


Prof. Dr. 
Stephan Kleuker   

259OOAD

c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Variante: Model kennt View
// Erzeugung
View v = new View();
Model m = new Model(v);
Controller c = new Controller(m);

MVC – einfacher Kommunikationsablauf
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c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Erzeugung
View v = new View();
View2 v2 = new View2();
Model m = new Model(v, v2);  // ???
Controller c = new Controller(m);

v2:View2

zeige()

genereller Ablauf 
gut, aber Erstellung 
hölzern

MVC: was bei mehreren Views
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c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

// Erzeugung
View v = new View();
View2 v2 = new View2();
Model m = new Model();
m.add(v);
m.add(v2);
Controller c = new Controller(m);

v2:View2

zeige()

besser, aber View vom 
Model getrennt, neue 
Daten immer als 
Parameter von zeige()

MVC: mehrere Views
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v2:View2

c:Controller

m:Model
new Model()

// Erzeugung
Model m = new Model();
Controller c 
    = new Controller(m);
View v = new View(m);
View2 v2 = new View2(m);

v:View

new View2(m)

new Controller(m)

add(this)

new View(m)

add(this)

extern

MVC: Model hält Sammlung angeschlossener Views
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c:Controller v:Viewm:Model

aendere()

aendere()
zeige()

v2:View2

zeige()

getAktuell()

getAktuell()

MVC: Model hält Sammlung angeschlossener Views
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Java-Beispiel zum MVC (1/7)
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Java-Beispiel zum MVC (2/7)
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Java-Beispiel zum MVC (3/7)

public class XModel{
 private List<XModelListener>listener = new ArrayList<>();
 private int modellwert = 42;
 

 public void addXModelListener(XModelListener x){
   this.listener.add(x); //Verwaltung der Listener des Modells
 }
 

 public int getWert(){ //Auslesen der Modellinhalte
   return this.modellwert;
 }
 

 public void changeValue(int delta){ //Veränderung des Modells
   this.modellwert += delta;
   this.fireXModelChanged(); // alle informieren
 }
 

 private void fireXModelChanged(){
   for(XModelListener x: this.listener)
       x.xModelChanged();  
 }
}
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Java-Beispiel zum MVC (4/7)

public class XView extends JFrame implements XModelListener{
 private XModel xmodel;
 private JLabel jlabel = new JLabel("Modellwert:    ");
 public XView(XModel x){
    super("Ich bin der View");
    this.xmodel = x;
    this.xmodel.addXModelListener(this);
    //Rest Swing für Anzeige
    super.getContentPane().add(jlabel);
    super.setDefaultCloseOperation(EXIT_ON_CLOSE);
    super.setSize(250, 60); 
    super.setLocation(0, 0); 
    super.setVisible(true);  
  }

  @Override
  public void xModelChanged() {
    this.jlabel.setText("Modellwert: "+this.xmodel.getWert());
  }
}
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Java-Beispiel zum MVC (5/7)
import java.awt.FlowLayout;
import java.awt.event.*; // hier zur Abkuerzung, in echten
import javax.swing.*;    // Projekten diesen * vermeiden

public class XController extends JFrame{
  private XModel xmodel;
  

  public XController(XModel x){
    super("Ich bin der Controller");
    this.xmodel = x;
    super.getContentPane().setLayout(new FlowLayout());
    JButton plus = new JButton("plus");
    super.getContentPane().add(plus);
    plus.addActionListener(new ActionListener(){
      @Override
      public void actionPerformed(ActionEvent e){
        xmodel.changeValue(1);
      }}
    );
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Java-Beispiel zum MVC (6/7)

JButton minus = new JButton("minus");
    super.getContentPane().add(minus);
    minus.addActionListener(new ActionListener(){
      @Override
      public void actionPerformed(ActionEvent e){
        xmodel.changeValue(-1);
      }}
    );
    super.setDefaultCloseOperation(EXIT_ON_CLOSE);
    super.setSize(250, 60); 
    super.setLocation(0, 90);
    super.setVisible(true);
  }
}
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Java-Beispiel zum MVC (7/7)

public interface XModelListener {
  public void xModelChanged();
  /* Anmerkung: alternativ kann man auch geänderte
     Werte als Parameter übertragen */
}

public class XStarter {
  public static void main(String[] args) {
    XModel x = new XModel();
    new XView(x);
    new XController(x);
  }
}
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Mehrere Views – mehrere Controller – ein Model
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Pattern-Varianten

Pattern schlagen eine mögliche Lösung vor; kann in Projekten 
variiert werden

• Interface weglassen, wenn nur eine View-Art

• Aufteilung auch sinnvoll, wenn nur ein View existiert (klare 
Aufgabentrennung)

• wenn Controller und View eng verknüpft, können sie vereinigt 
werden, z. B. GUI-Elemente in Java-Swing

• Listenerverwaltung kann vom Model in Controller verlegt 
werden

• auch ohne Listen ist MVC-Aufteilung sinnvoll
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aendere()

aendere()

zeige()

leseWerte()

// Erzeugung
Model m = new Model();
View v = new View(m);
Controller c = new Controller(m, v);

Ablaufvariante: Controller managt alles

c:Controller v:Viewm:Model
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// Internet
// Web-Seite (View) ruft Controller auf
// Controller ändert Model
// Controller erzeugt neuen View
// View berechnet aus Model neue Web-Seite, 
//    Web-Seite beinhaltet Verbindung zum Controller

Variante der Ablaufvariante: Controller managt alles

aendere()

aendere()

new View()

leseWerte()

c:Controller

neu:View

m:Modelalt:View
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MVC als Design-Konzept

• Kommunikationswege  hängen von konkreter Umsetzung ab

• Viele Varianten: 

– Model-Delegate (Controller und View zusammen)

– Model-View-ViewModel (eigenes Model für Darstellung)

– Model-View-Presenter

– Model-View-Adapter

• eine Umsetzung: Controller steuert Änderungen des Modells, 
Modell teilt allen Views mit, dass eine Änderung aufgetreten ist

• folgende Folien: eine Verknüpfungsmöglichkeit in MVC
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Ansatz Observer-Observable

• Es gibt Subjekte für deren Zustand sich viele interessieren (z. B. 
Nachrichtenkanäle)

• Die Subjekte bieten die Möglichkeit, dass sich Interessenten 
anmelden (z. B. Kanal abonnieren)

• Bei jeder Subjektzustandsänderung werden Interessenten 
informiert (neue Nachrichten)

• Interessent muss sich bei Subjekt anmelden

• Damit obiges Objekt weiß, wie Interessent angesprochen 
werden soll, muss Interessent Schnittstelle realisieren

• Hinweis: Enge Verwandtschaft zur hier vorgestellten Model-
View-Controller-Variante

8.3

Video

Video

https://youtu.be/dm4doc4e57A
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Beobachter (Observer – Observable)
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Beobachter – Beispielaufgabe (1/5)

Gegeben sei obiges Klassendiagramm, das die Nutzung des 
Observer-Pattern zeigt. Dabei interessieren sich Aktien handelnde 
Personen für Aktienkurse und können sich bei Aktien anmelden, 
die ihnen zuvor mit neueAktie übergeben wurden. Falls sich der 
Wert dieser Aktien ändert, werden alle interessierten Handelnden 
benachrichtigt, welche Aktie (ihr Name) sich geändert hat. Aktien 
haben einen eindeutigen Aktiennamen. 

-handelnde 

* 

HandelndInterface

+anmelden(h:HandelndInterface) 

+Handelnd(handelndname:String) 

-handelndname:String 

Handelnd
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Beobachter – Beispielaufgabe (2/5)

import java.util.ArrayList;
import java.util.List;
public class Aktienverwaltung {
  private String aktienname;
  private List<HandelndInterface> handelnde  
                       = new ArrayList<>();
  

  protected Aktienverwaltung(String aktienname) {
    this.aktienname = aktienname;
  }

  public void anmelden(HandelndInterface h){
    this.handelnde.add(h);
  }
  

  public void benachrichtigen(){
    for(HandelndInterface h: this.handelnde)
      h.aktualisieren(aktienname);
  }
  

  public String getAktienname(){
    return this.aktienname;
  }
}
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Beobachter – Beispielaufgabe (3/5)

public class Aktie extends Aktienverwaltung {
  

  private int wert=42;
  public Aktie(String aktienname){
    super(aktienname);
  }
  

  public int getWert() {
    return this.wert;
  }

  public void setWert(int wert) {
    this.wert = wert;

super.benachrichtigen();
}

@Override
public String toString(){
return super.getAktienname();

}
}
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Beobachter – Beispielaufgabe (4/5)

public interface HandelndInterface {
  public void aktualisieren(String aktienname);
}

import java.util.ArrayList;
import java.util.List;
public class Handelnd implements HandelndInterface {

private String handelndname;
  private List<Aktie> aktien = new ArrayList<>();
  
  public Handelnd(String handelndname) {
    this.handelndname = handelndname;
  }

  public void neueAktie(Aktie a){
    this.aktien.add(a);
    a.anmelden(this);
  }
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Beobachter – Beispielaufgabe (5/5)

public void aktualisieren(String aktienname) {
    System.out.println(handelndname
            + " hat neuen Wert für " + aktienname + ": "
            + this.holeAktienWert(aktienname) );
  }

  //alternativ beim Aktualisieren Wert mitschicken
  private int holeAktienWert(String aktienname){
    for(Aktie a: this.aktien)

if(a.getAktienname().equals(aktienname)) {
return a.getWert();

}
//nie erreichen

    assert(false); // Java, ist nicht JUnit!
    return 0;
  }

@Override
public String toString(){
return this.handelndname;

}
}
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Pattern und Varianten

• Für fast jedes Pattern gibt es Varianten, die abhängig von 
Randbedingungen sinnvoller sein können

Bsp.: Wertänderung mit aktualisieren() übertragen

Bsp.: Java hat keine Mehrfachvererbung

• Subjekt wird Interface

• Listenverwaltung in

 Hilfsklasse

• Konkretes Subjekt

 delegiert Listen-

 aufgaben an Objekt

 der Hilfsklasse
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Adapter - Problem

Szenario:

• Klasse IchBrauchB benötigt ein Objekt der Klasse B, genauer 
spezielle Funktionalität (Methode) der Klasse B

• Wir haben bereits eine Klasse C, die die von IchBrauchB von B 
geforderte Funktionalität anbietet

• C bietet die gewünschte Funktionalität unter dem falschen 
Methodennamen an,  da C Teil einer komplexen Klassenstruktur 
ist, kann C nicht verändert werden

Lösung:

• Schreibe Adapterklasse, die sich wie B verhält (von B erbt bzw. 
Interface B implementiert) und Objekt der Klasse C aggregiert

• Adapter leitet Aufruf der von IchBrauchB gewünschten 
Funktionalität an C weiter

Video

Video

https://youtu.be/lRDBSA12BDE
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Adapter - Lösung

public class Adapter implements B{
  private C c = null;
  ... 
  public Adapter(){ this.c = new C();}
  ...
  @Override
  public ... machWasTolles(){
    return this.c.kannWasWasAuchBKoennenSoll();
  }
}
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Fassade nach außen

• Generell sollen Klassen eng zusammen-
hängend sein, z. B. Methoden können nicht auf 
mehrere Klassen verteilt werden

• anderen Nutzungen möchte man nur eine 
einfache externe Sicht bieten, deshalb liefern 
zusammenhängende Klassen häufiger eine 
Fassadenklasse („davorgeklatscht“) nach außen
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Einsatzmöglichkeiten von Sichtbarkeiten

• Standard-OO-Programmierung: Exemplarvariablen private [oder 
protected], Exemplarmethoden public (analog für Klassenvariablen 
und –methoden)

• In Spezialfällen können Sichtbarkeiten geändert werden, Beispiel: 

– Im gesamten System gibt es ein Objekt, mit dem die Verbindung 
zu anderen Systemen aufgebaut wird

– Wird das Objekt das erste Mal benötigt, wird es erzeugt, bei 
weiteren Anfragen werden Referenzen auf dieses identische 
Objekt zurück gegeben 

• Objekt muss in Klassenvariable gespeichert werden

• Nutzungen dürfen keine Konstruktoren aufrufen, da es sonst 
verschiedene Objekte gibt (Konstruktoren werden private)

• Zugriff auf das Objekt über Klassenmethoden



Prof. Dr. 
Stephan Kleuker   

288OOAD

Singleton (1/3)

public class Singleton {
  private int x = 0;
  private int y = 0;
  private static Singleton pkt = null; //für einziges 
                                       //Exemplar
  
  private Singleton(int x, int y){
    this.x = x;
    this.y = y;
  }
  
  public static Singleton getPunkt(){
    if (Singleton.pkt == null) { // ein einziges Mal erzeugen
      Singleton.pkt = new Singleton(6, 42);
    }
    return Singleton.pkt;
  }
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Singleton (2/3)

  @Override
  public Singleton clone(){
    //echtes Kopieren verhindern
    return this;
  }
  
  public void ausgeben(){
    System.out.print("[" + this.x + "," + this.y + "]");
  }
  
  public void verschieben(int dx, int dy){
    this.x += dx;
    this.y += dy;
  }
}
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Singleton (3/3)

public class Main {
  public static void main(String[] s){
    Singleton p1 = Singleton.getPunkt();
    Singleton p2 = Singleton.getPunkt();
    // Singleton sing = new Singleton(); 
    // error: constructor not visible
    p1.ausgeben();
    p2.ausgeben();
    if(p1 == p2) {
        System.out.println("\n identisch");
    }
    p1.verschieben(3, 5);
    p1.ausgeben();
    p2.ausgeben();
    Singleton p3 = p1.clone();
    if(p2 == p3) {
        System.out.println("\n identisch"); 
    } 
  }
}

[6,42][6,42]
identisch
[9,47][9,47]
identisch
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Decorator (1/9)

• gegeben ist eine Klasse mit Methoden; diese gegebenen 
Methoden sollen ergänzt/verändert werden

• Beispiel: Protokolliere was wird wann ausgeführt (Logging)

• Ansatz: gegeben einfache Klasse

Video

Video

https://youtu.be/J337cRB5QBU
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Decorator (2/9)

public class Konto {
    private int stand;
    
    public void einzahlen(int betrag) {
        this.stand += betrag;
    }
    
    public int getStand() {
        return this.stand;
    }

    public String toString() {
        return "Konto{" + "stand=" + this.stand + '}';
    }
}
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Decorator (3/9)

• ergänze Interface

public interface KontoInterface {

    void einzahlen(int betrag);

    int getStand();
    
}

public class Konto
implements KontoInterface { …
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Decorator (4/9)

• ergänze neue Klasse (Decorator) die das Interface realisiert und 
ein Objekt der Klasse als Exemplarvariable hält

• Idee: delegiere 
Aufrufe an diese 
Exemplarvariable 
und ergänze drum 
herum neue 
Funktionalität

• flexibler: 
Exemplarvariable 
nutzt Interface-Typ
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Decorator (5/9)
public class KontoDecorator implements KontoInterface {
    

    private KontoInterface konto;
    

    public KontoDecorator(KontoInterface konto){
        this.konto = konto;
    }

    @Override
    public void einzahlen(int betrag) {
        System.out.println("vor einzahlen");
        this.konto.einzahlen(betrag);
        System.out.println("nach einzahlen");
    }

    @Override
    public int getStand() {
        System.out.println("vor getStand");
        int ergebnis = this.konto.getStand();
        System.out.println("nach getStand");
        return ergebnis;
}   }   
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Decorator (6/9)

public static void main(String[] args) {

        KontoInterface k = new Konto();
        KontoInterface kd = new KontoDecorator(k);
        kd.einzahlen(42);
        System.out.println("Stand: " + kd.getStand());
        System.out.println("Konto: " + k);
    }

vor einzahlen
nach einzahlen
vor getStand
nach getStand
Stand: 42
Konto: 
Konto{stand=42}
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Decorator (7/9) – etwas mehr Effekt (1/2)

public class KontoDecorator2 implements KontoInterface{
    
    private KontoInterface konto;
    private int schutz; // meine Privatgebuehr
    
    public KontoDecorator2(KontoInterface konto){
        this.konto = konto;
    }

    @Override
    public void einzahlen(int betrag) {
        System.out.println("vor einzahlen");
        this.schutz += 4;
        this.konto.einzahlen(betrag - 4);
        System.out.println("nach einzahlen");
    }
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Decorator (8/9) – etwas mehr Effekt (2/2)

    @Override
    public int getStand() {
        System.out.println("vor getStand");
        int ergebnis = this.konto.getStand();
        System.out.println("nach getStand");
        return ergebnis + this.schutz;
    }
    
}



Prof. Dr. 
Stephan Kleuker   

299OOAD

Decorator (9/9) – sind verknüpfbar

public static void main(String[] args) {

        KontoInterface k = new Konto();
        KontoInterface ktmp = new KontoDecorator2(k);
        KontoInterface kd = new KontoDecorator2(ktmp);
        kd.einzahlen(42);
        System.out.println("Stand: " + kd.getStand());
        System.out.println("Konto: " + k);
    } vor einzahlen

vor einzahlen
nach einzahlen
nach einzahlen
vor getStand
vor getStand
nach getStand
nach getStand
Stand: 42
Konto: Konto{stand=34}
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Proxy
Video

Video
• Beim Proxy (oder Stellvertreter)-Pattern wird der Zugriff auf 

eine „wertvolle“ Ressource durch eine vorgeschaltete Klasse 
gesteuert

• Nutzungen des Proxys nutzen diesen wie die eigentliche Klasse 

https://youtu.be/sycH0aSiq84
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Proxy – Implementierungsmöglichkeit (1/3)

public interface KlasseMitWertvollemInhalt {
  public int anfrage(String details);
}

public class RealeKlasse implements 
KlasseMitWertvollemInhalt {

  private Verbindung verbindung;
  
  public RealeKlasse(String verbindungsdaten){
    this.verbindung = new Verbindung(verbindungsdaten);
  }
  
  @Override
  public int anfrage(String details) {
    return this.verbindung.befragen(details);
  }
}
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public class Proxy implements KlasseMitWertvollemInhalt {

  //hier Variante mit Singleton (gibt Alternativen)
  private static RealeKlasse realesObjekt; 
  
  public Proxy(){
    if(Proxy.realesObjekt == null){
      Proxy.realesObjekt = new RealeKlasse("Spezialinfos");
    }
  }
  
  public int anfrage(String details) {
    // hier nur Weiterleitung
    // Varianten: Protokollierung, Cache, …
    return Proxy.realesObjekt.anfrage(details);
  }
}

Proxy – Implementierungsmöglichkeit (2/3)
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public class Nutzend {
  
  public int proxyNutzen(String anfrage){
    KlasseMitWertvollemInhalt k = new Proxy();
    return k.anfrage(anfrage);
  }
  
  public static void main(String[] s){
    //etwas sinnlos, zu Testzwecken
    Nutzend n = new Nutzend();
    System.out.println(n.proxyNutzen("gib41"));
  }
}

Proxy – Implementierungsmöglichkeit (3/3)
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Proxy, Decorator – Verwandt, aber anderer Einsatz (1/2)
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Proxy, Decorator – Verwandt, aber anderer Einsatz (2/2)

• gemeinsam: Verhalten einer existierenden Klasse wird verändert

• beide sind zur Erweiterung der Funktionalität nutzbar

aber:

• Proxy-Schwerpunkt liegt auf der Kontrolle des Objektzugriffs

• Objekt wird oft im Proxy erzeugt

• Verbindung wird zu Compile-Zeit bereits festgelegt

• Decorator fügt Funktionalität zu existierendem Objekt hinzu

• Objekt wird injiziert (Übergabe Konstruktor oder mit set)

• Verbindung wird erst zur Laufzeit hergestellt
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Strategy - Problem

• Für eine Methode gibt es verschiedene Möglichkeiten sie zu 
implementieren

• Die Wahl der Implementierungsart soll leicht verändert werden 
können

Einsatzszenarien

• Prototypische Implementierung soll später leicht ausgetauscht 
werden können

• Wahl der effizientesten Methode hängt von weiteren 
Randbedingungen ab (z. B. suchen / sortieren)

• Ausführungsart der Methode soll zur Laufzeit geändert werden 
können (z. B. nutzende Person zahlt für einen Dienst und 
bekommt statt Werbe- Detailinformationen)
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Strategy - Lösungsbeispiel
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State-Pattern (eine eigene Variante)
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State-Pattern – Implementierungsauszug (1/3)

public abstract class Zustand {

  protected int x;

  public abstract Zustand setX(int x);
  public abstract String status();
  protected Zustand(int x){
  this.x = x;
 }
}

• Jede zustandsverändernde Methode (hier setX) führt 
Änderungen aus und gibt Folgezustand zurück

• Zustand könnte auch veränderbarer Parameter sein 
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State-Pattern – Implementierungsauszug (2/3)

public class ZustandOK extends Zustand{

 public ZustandOK(int x) {
  super(x);
 }

 @Override
 public Zustand setX(int x) {
  super.x = x;
  if(x >= 42) {
         return new ZustandKritisch(x);
       }
  return this;
 }

 @Override
 public String status() {return "alles ok";}
}
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State-Pattern – Implementierungsauszug (3/3)

public class Messstation {
 private String standort = "City";
 private Zustand z = new ZustandOK(0);
 
 public void zustandAendern(int wert){
   this.z = this.z.setX(wert);
 }
 
 public void ausgeben(){
   System.out.println(this.standort
                     + " Zustand: " + this.z.status());
 }
}
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Umsetzung klassischer endlicher Automaten

• Automat mit Startzustand S1, Menge von Endzuständen {S3} 
und Eingabezeichen a, b; akzeptiert Sprache aab*

Zustand Zeichen Folge-
zustand

S1 a S2

S1 b S4

S2 a S3

S2 b S4

S3 a S4

S3 b S3

S4 a S4

S4 b S4

public class S3 implements Zustand {

  @Override
  public Zustand a() {
    return new S4();
  }

  @Override
  public Zustand b() {
    return this;
  }
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Command-Pattern

• Problem: unterschiedliche Aktionen werden zentral ausgeführt 
und verwaltet

• Ansatz: Stecke detaillierte Ausführung in ein (Command-) 
Objekt; diese haben gemeinsames Interface

• Command-Objekte kennen Details der Ausführung

• Steuerung dann einfach änder- und erweiterbar

M M+ M-

7 8 9 +

4 5 6 -

1 2 3

0

• Beispiel: Kleiner Taschenrechner mit + 
und – und einem Zwischenspeicher für 
einen Wert, der dann aufaddiert oder 
subtrahiert werden kann

Video

Video

https://youtu.be/jjgmQUmZSi0
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Bild aus der Literatur

• Command ist abstrakt, zeigt Ausführungsoperation

• ConcreteCommand ist Umsetzung für Receiver

• Receiver führt Operation aus

• Invoker kennt Commands, startet Ausführung

• Client erzeugt ConcreteCommand und setzt Receiver
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Beispiel 1/13 : Rechner 1/2

package business;

public class Rechner {

 private int anzeige;
 private int speicher;
 
 public int getAnzeige() {
  return this.anzeige;
 }
 
 public void setAnzeige(int anzeige) {
  this.anzeige = anzeige;
 }
 
 public int getSpeicher() {
  return this.speicher;
 }
 
 public void setSpeicher(int speicher) {
  this.speicher = speicher;
 }
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Beispiel 2/13 : Rechner 2/2
public void addieren(int wert) {

  this.anzeige += wert;  
 }

 public void subtrahieren(int wert) {
  this.anzeige -= wert;  
 }
 

 public void speichern(){
  this.speicher = this.anzeige;
 }
 

 public void speicherAddieren(){
  this.anzeige += this.speicher;
 }
 

 public void speicherSubtrahieren(){
  this.anzeige -= this.speicher;
 }
 

 @Override
 public String toString(){
     return "Speicher: "+ this.speicher +"  Wert: "
                        + this.anzeige;
 }
}
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Beispiel 3/13 : Klassischer Dialog 1/2
package io;
import business.Rechner;

public class Dialog {
  private Rechner rechner = new Rechner();

  public void dialog() {
    EinUndAusgabe ea = new EinUndAusgabe();
    int eingabe = -1;
    while (eingabe != 0) {
      System.out.println(  "(0) Programm beenden\n" 
          + "(1) addieren\n" + "(2) subtrahieren\n" 
          + "(3) Anzeige in Speicher\n"
          + "(4) Speicher addieren\n" 
          + "(5) Speicher subtrahieren");
      eingabe = ea.leseInteger();
      switch (eingabe) {
        case 1: {
          System.out.print("Wert eingeben: ");
          this.rechner.addieren(ea.leseInteger());
          break;
        }
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Beispiel 4/13 : Klassischer Dialog 2/2

case 2: {
      System.out.print("Wert eingeben: ");
      this.rechner.subtrahieren(ea.leseInteger());
      break;
    }
    case 3: {
      this.rechner.speichern();
      break;
    }
    case 4: {
      this.rechner.speicherAddieren();
      break;
    }
    case 5: {
      this.rechner.speicherSubtrahieren();
      break;
    }
  }
  System.out.println(this.rechner);
 }
}
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Beispiel 5/13 : Funktioniert immerhin

(0) Programm beenden

(1) addieren

(2) subtrahieren

(3) Anzeige in Speicher

(4) Speicher addieren

(5) Speicher subtrahieren

1

Wert eingeben: 43

Speicher: 0  Wert: 43

(2) subtrahieren

2

Wert eingeben: 1

Speicher: 0  Wert: 42

(3) Anzeige in Speicher

3

Speicher: 42  Wert: 42

(4) Speicher addieren

4

Speicher: 42  Wert: 84

(5) Speicher subtrahieren

5

Speicher: 42  Wert: 42

(0) Programm beenden

0

Speicher: 42  Wert: 42
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Beispiel 6/13 : Ansatz: Steuerungsklassen
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Beispiel 7/13 : Pattern-Nutzung
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Beispiel 8/13 : Umsetzung 1/3 
package io.commands;
public interface Command {
  public void execute();
}

package io.commands;

import main.EinUndAusgabe;
import business.Rechner;

public class Addieren implements Command {
  private Rechner rechner;
  

  public Addieren(Rechner rechner){
    this.rechner = rechner;
  }

  @Override
  public void execute() {
    System.out.print("Wert eingeben: ");
    this.rechner.addieren(new EinUndAusgabe().leseInt());
  }
  

  @Override
  public String toString(){return "addieren";}
}

typischerweise werden
Zusatzinformationen 

benötigt

eigentliche 
Ausführung
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Beispiel 9/13 : Umsetzung 2/3  (Varianten -> Praktikum)

package main;

import java.util.HashMap;

import java.util.Map;

import business.Rechner;

public class Dialog {

  private Rechner rechner = new Rechner();

  private Map<Integer,Command> aktionen = new HashMap<>();

  

  public Dialog(){

    this.aktionen.put(1, new Addieren(this.rechner));

    this.aktionen.put(2, new Subtrahieren(this.rechner));

    this.aktionen.put(3, new AnzeigeSpeichern(this.rechner));

    this.aktionen.put(4, new SpeicherAddieren(this.rechner));

    this.aktionen.put(5

                   , new SpeicherSubtrahieren(this.rechner));

  }
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Beispiel 10/13 : Umsetzung 3/3 

public void dialog() {

    EinUndAusgabe ea = new EinUndAusgabe();

    int eingabe = -1;

    while (eingabe != 0) {

      System.out.println("(0) Programm beenden");

      for(int tmp:this.aktionen.keySet()){

        System.out.println("(" + tmp + ") "

                          + this.aktionen.get(tmp));

      }    

      eingabe = ea.leseInteger();

      Command com = this.aktionen.get(eingabe);

      if(com != null){

        com.execute();

      }

      System.out.println(this.rechner);

    }

  }
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Beispiel 11/13 : Undo

• Command-Pattern eignet sich sehr gut, Aktionen wieder 
rückgängig zu machen

• es müssen alle Änderungen der Aktion bekannt und reversibel 
sein

• gibt verschiedene Varianten

– Ansatz 1: jedes Command-Objekt hat undo-Methode und 
wird gespeichert [nächste Folien]

– Ansatz 2: es gibt eigenes Undo-Command-Objekt als 
Ergebnis von execute()

– Ansatz 3: Undo- und Command-Objekte haben keine 
gemeinsame Klasse / Interface

– …
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Beispiel 12/13 : Variante Undo-Methode
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Beispiel 13/13 : Variante Undo-Objekte (Skizze)
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Fazit Command-Pattern

• generell oft bei Steuerungen einsetzbar

• oft gut für Undo- und Redo geeignet

• meist individuelle Varianten des Patterns sinnvoll

• (in UML-Diagrammen oft zusätzliche Klasse, die auf Command 
zugreifen kann)

• Command-Klassen müssen einfach an benötigte Informationen 
kommen können; wird dies kompliziert, ist der Pattern-Einsatz 
nicht sinnvoll
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Visitor Pattern (1/5) - Idee

• Es gibt eine zentrale Aufgabe zur Verarbeitung mehrerer 
Objekte unterschiedlicher Klassen

• Diese Klassen anzupassen ist aufwändig, Gefahr von Copy & 
Paste

• Verarbeitung soll an einer Stelle passieren, um Synergien zu 
nutzen und leicht auf Änderungen reagieren zu können

• Beispiel: In einer Reiseverwaltung werden Reisen aus 
unterschiedlichen Bausteinen, wie Hotel- und Mietwagen-
Reservierungen zusammengestellt, für alle Fach-Entitäten soll 
es Umwandlungsmöglichkeiten nach XML und JSON geben 

Video

Video

https://youtu.be/uQZGQBON6VE
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Visitor Pattern (2/5) - Ansatz

• Neues Interface für Zugriff eines 
Visitors

• In der Methode wird visit()-
Methode des Visitors mit 
Parameter this aufgerufen

• Visitor kann damit auf besuchtes 
Objekt zugreifen

• Hinweis: Rückgabeparameter 
weggelassen, sind 
aufgabenindividuell zu 
definieren (cast bei Object 
notwendig)
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Visitor Pattern (3/5) - Umsetzung

• Statische Polymorphie, für jede besuchte Klasse eigene 
Methode (mit eigener Rückgabe)
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Visitor Pattern (4/5) - Nutzung
for(Basis b:bas) {

      System.out.println(b.accept(vis));

 }
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Visitor Pattern (5/5) - Diskussion

• Wesentlicher Vorteil: fachliche 
Funktionalität zu bestimmten Themen 
kompakt in konkreten Visitor-
Realisierungen gebündelt (-> einfach 
Wart- und Erweiterbarkeit)

• Alternativ: Direkte Nutzung eines 
Interfaces, Berechnungen in jeder 
Klasse notwendig (weniger Klassen, 
schwerer wartbar)

• Alternative abhängig von Komplexität 
und Wahrscheinlichkeit einer 
Änderung wählbar

• Visitor ermöglicht Klassen zu ergänzen 
ohne deren Code anzufassen
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Verantwortlichkeitsmuster – GRASP-Pattern

• Expertenmuster

• Creator

• Low coupling

• High cohesion

• Don‘t talk to strangers

• Kunstgebilde

• Command Query Separation

GRASP (General Responsibility Assignment Software Patterns) 
nach C. Larman

(Folien basierend auf Prof. T. Gervens)

Video

Video

https://youtu.be/8lfuDS7gLyw
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Muster: Experte

Name: Expert(e)

Regel:

 Man übertrage eine gegebene Aufgabe bzw. eine 
Verantwortlichkeit auf diejenige Klasse, die das notwendige 
Wissen besitzt!

Hintergrund: Man hat:

– einerseits eine Vielzahl von Klassen (aus der Analyse oder 
vorherigen Gestaltungschritte)

– und andererseits eine Vielzahl zu vergebender Aufgaben 
und Verantwortlichkeiten
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Beispiel: Expert (Fachwissen)

• Frage: Wer berechnet die Zinsen?
• Mögliche Antworten:

– Objekt der Klasse Girokonto, denn es kennt den 
Betrag und die Laufzeit

– die Bank, denn sie kennt den Zinssatz
• vorzuziehen: Die erste Möglichkeit, denn Girokonto 

besitzt mehr notwendiges Wissen und erhält Ergebnis
• Bemerkung:

– Fachwissen ist teilweise über mehrere Klassen 
verteilt, man muss entscheiden, wer die größte 
Expertise ist

– Alle Objekte können aktiv werden (anders als bei 
vielen realen Objekten)

Girokonto

-betrag

-laufzeit

Bank   

-zinssatz

*

Buchend

-name

*
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Muster: Creator

Name: Creator

Regel: Gegeben sei eine Klasse A. Die Aufgabe, Objekte dieser 
Klasse zu erzeugen (Konstruktoraufrufe), soll an eine Klasse 
übergeben werden, die

– ein Aggregat von A-Objekten ist

– zu A-Objekten in enger Beziehung steht

– das notwendige Wissen (Initialisierungsdaten) besitzt, um A-
Objekte zu erzeugen

Hintergrund:                                                          

• Die Objektwelt ist dynamisch, ständig entstehen neue Objekte. 

Objekterzeugung ist daher eine wichtige Aufgabe; die 

Zuständigkeit dafür sollte sorgfältig vergeben werden
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Beispiel: Creator (1/2)

Wer legt wen an? Zum Beispiel:

Klausur      :  angelegt durch Klausurliste
Teilnahmeeintrag :  angelegt durch Klausur 

Teilnahmeeintrag 
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Beispiel: Creator (2/2)

Kommunikationsdiagramm: (ausdrucksstark wie einfaches 
Sequenzdiagramm)

1. richteKlausurEin(…)

2. anmelden(…)

:Prüfungsamt

:Klausur

1.1.1 new Klausur(…)

2.1.1 macheEintrag(…)

:Teilnahmeeintrag

2.1.1.1.1 

newTeilnahmeeintrag(…)

:Klausurliste

1.1 erstelleKlausur(…)

2.1 melden(…)



Prof. Dr. 
Stephan Kleuker   

340OOAD

Muster: Geringe Kopplung

Name: “geringe Verbindung” bzw. “low coupling”

Regel: Aufgaben unter den Klassen so verteilen, dass die 
Abhängigkeiten unter den Klassen möglichst gering sind!

Hintergrund: Klassen sollten möglichst isoliert sein, denn dadurch 
werden

– Entwicklung (einschließlich Test)

– Verständnis

– Wiederverwendbarkeit

 der Klassen erleichtert



Prof. Dr. 
Stephan Kleuker   

341OOAD

Beispiel: Geringe Kopplung (1/2)

• Aufgabe: Es soll die Note eines Klausurteilnehmers  ermittelt 
werden. Eine Lösung  als Kommunikationsdiagramm könnte 
sein:

1. note=ermittleNote(studium,sem

,modul,matrnr)

e:Teilnahmeeintrag k:Klausur

1.2. e=liefereEintrag(matnr)

1.3. note=getNote()

Schlecht!

:Klausurliste
1.1. k=liefereKlausur(modul)

:Prüfungsamt
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Beispiel: Geringe Kopplung (2/2)

Besser:
• keine Abhängigkeit zwischen Prüfungsamt und Klausur
• Prüfungsamt benötigt kein Wissen über Organisation von Klausur
• entspricht auch dem “Experten-Muster”

1. note=ermittleNote(studium

,sem,modul,matrnr)
:Prüfungsamt

k:Klausur

1.1.2. note=sagNote(matrnr)

1.1.2.2. note=getNote()

:Klausurliste

1.1. note=ermittleNote(modul,matnr)

1.1.2.1.e=findeTE(matrnr)

1.1.1.

k=findeKlausur(modul)

e:Teilnahmeeintrag
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Muster: hoher Zusammenhalt

Name: “hoher (funktionaler) Zusammenhalt” bzw. “high cohesion”

Regel: Die Verantwortungen, die einer Klasse übertragen werden, 
sollten

• ähnlich oder

• zueinander verwandt sein

Hintergrund: Klassen, die unterschiedlichste Aufgaben erfüllen, sind 
schwierig

• zu verstehen

• zu warten

• wiederzuverwenden
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Beispiel: hoher Zusammenhalt

• Die Klasse Klausur enthält die Methoden

– anzahlTeilnehmende()

– notendurchschnitt()

– standardabweichung()

– getDozierend()

etc., aber z.B. nicht Methoden wie

– setDozierendname()

– gibMatrikelnummer(String name)

Dozierend

Prüfungsamt

Klausur

*

1

*

*

Klausurliste

Klausur

anzahlTeilnehmende():int

notendurchschnitt():double

Standardabweichung():double

drucken():String

getDozierend():String



Prof. Dr. 
Stephan Kleuker   

345OOAD

Muster: Don’t Talk to Strangers

Name: “Don’t talk to strangers“ 

Hintergrund: Ein Klient habe eine Assoziation zu einem (direkten) 
Objekt.  Dieses wiederum habe eine Assoziation zu einem 
anderen (für den Klienten indirekten) Objekt.

Regel:  Dann sollte das direkte Objekt die Zuständigkeit erhalten, 
mit dem indirekten Objekt zu kommunizieren (und nicht der 
Klient),  so dass der Klient nichts über das indirekte Objekt 
wissen muss.
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Konkretisierung: Don’t Talk to Strangers

• Dieses Muster definiert Randbedingungen, zu welchen anderen 
Objekten Nachrichten geschickt oder nicht geschickt werden 
sollten.

• Erlaubte Nachrichten: 
– Zu dem this Objekt (oder self)
– Einer Exemplarvariablen von this
– Einem Objekt, das Parameter einer Methode ist
– Einem Element einer Collection (Container) , welche 

Exemplarvariable von this ist
– Einem Objekt, das innerhalb einer Methode erzeugt wurde

• Nicht erlaubt z.B.: 
– Ein Objekt soll niemals eine Nachricht zu einem Objekt 

senden,  dessen Adresse es als Rückgabewert eines 
Methodenaufruf mit einem dritten Objekt erhalten hat
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Muster: Reines Kunstgebilde

Name: “Reines Kunstgebilde” bzw. “pure fabrication”

Regel: Falls man einer Klasse aufgrund

– natürlicher Gegebenheiten bzw.

– anderer logischer Gegebenheiten

 bestimmte Aufgaben übertragen will und dadurch das Muster 
“hoher Zusammenhalt” verletzt wird, so sollte man einige 
Aufgaben in eine eigene Kunstklasse auslagern

• Hintergrund: Dieses dient zur Auflösung eines Konfliktes 
zwischen

– natürlicher Modellierung und

– “hohem Zusammenhalt”
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Beispiel: Reines Kunstgebilde

Buchend
Kredit-

würdigkeit
Bank

* 0..111

Ein “reines Kunstprodukt”, dieses
vollzieht komplexe Aufgaben
(Prüfungen, Schufa-Abfrage usw.)

Prüfungsamt Klausur
1

*Klausurliste

Klausur

bewertung

Bewertung der Klausur

für Studierende, Methoden über alle
Ergebnisse, wie Test auf  Normalverteilung…
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Muster: Command-Query Separation
Name: “Ausführung-Abfrage Trennung” bzw. “Command-Query 

Separation (CQS)”

Regel: Die Methode einer Klasse soll eine der Funktionen
– Ausführen einer Aktion mit der Nebenwirkung, dass Objekt-/ 

Klassenvariablen verändert werden (möglichst vom Typ void)
– Ausführen einer Anfrage, um Daten ohne Nebenwirkung 

zurückzugeben   
erfüllen, aber auf keinen Fall beides tun. 
„Das Stellen einer Frage sollte nicht die Antwort beeinflussen.“

Hintergrund: Die Schnittstelle einer Klasse sollte möglichst 
übersichtlich und verständlich sein. Insbesondere muss transparent 
sein, wie Objekt- und Klassenvariablen verändert werden.
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Beispiel: Command-Query Separation

Beispiel 1: Inkrement

private int x; 

public int nextX() {

this.x = this.x + 1; 

return this.x; 

} //Schlecht!

private int x; 

public int getX() { 

return this.x; } 

public void incrementX() { 

this.x = this.x + 1; } //gut!

Beispiel 2: Monopoly Würfel

private int wert;

public int werfen() {

this.wert=(int)(Math

        .random()*6) + 1; 

return this.wert; 

} //Schlecht!

private int wert; 

public void werfen() {

  this.wert=(int)(Math.random()*6)

       + 1;  

} 

public int getWert(){

return this.wert;   } //gut!
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• immer sinnvolle Rückgabe nutzen; wenn wählbar wird statt 
void Objekt selbst zurück gegeben (this)

• Variante: Rückgabe eines Objekts gleichen Typs; nutzt z. B. 
Referenzen des Ursprungsobjektes

• verstößt klar gegen Command-Query Separation

• Beispiel Integer-Menge
public class Main {

   public static void main(String[] args) {

     IntMenge tmp = new IntMenge();

     tmp = tmp.hinzu(1, 21, 11, 41, 31, 1)

              .kleinerAls(41)

              .groesserAls(11);

     System.out.println(tmp);

   }

}

Method Chaining (1/3)

[21, 31]
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Method Chaining (2/3)
public class IntMenge {

  private Set<Integer> menge = new HashSet<>();

  public IntMenge(){ }
  

  public IntMenge hinzu(int... wert){
   for(int w:wert){
    this.menge.add(w);
   }
   return this; // hier sieht man Chaining
  }
  

  public IntMenge kleinerAls(int grenze){
   IntMenge ergebnis = new IntMenge();
   for(int w:this.menge){
    if(w < grenze){
     ergebnis.hinzu(w);
    }
   }
   return ergebnis;
  }



Prof. Dr. 
Stephan Kleuker   

353OOAD

Method Chaining (3/3)

 public IntMenge groesserAls(int grenze){
   IntMenge ergebnis = new IntMenge();
   for(int w: this.menge){
    if(w > grenze){
     ergebnis.hinzu(w);
    }
   }
   return ergebnis;
  }
  

  public boolean beinhaltet(int wert){
   return this.menge.contains(wert);
  }
  

  @Override
  public String toString(){
   return this.menge.toString();
  }

}
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Beispiel: Hilfsklasse Objekterzeugung (1/4)

• Beispielnutzung

Mitarbeitend tmp = MitarbeitendBuilder
                    .createBuilder()
                    .vorname("Murat")
                    .nachname("Meier")
                    .addFachgebiet(Fachgebiet.C)
                    .addFachgebiet(Fachgebiet.JAVA)
                    .build();

• generell zur Erzeugung von Objekten nutzbar

• durch Fluent-Programming (Method Chaining) besser lesbar

• Methoden einfach ergänzbar
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Beispiel: Hilfsklasse Objekterzeugung (2/4)
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Beispiel: Hilfsklasse Objekterzeugung (3/4)
public class MitarbeitendBuilder {

  private int id;
  private String vorname = "Eva"; //Default-Wert
  private String nachname = "Mustermann";
  private Set<Fachgebiet> fachgebiete = new HashSet<>();

  public MitarbeitendBuilder() {}
  

  public static MitarbeitendBuilder createBuilder(){        
    return new MitarbeitendBuilder();
  }

  public MitarbeitendBuilder vorname(String vorname) {
    this.vorname = vorname;
    return this;
  }

  public MitarbeitendBuilder nachname(String nachname) {
    this.nachname = nachname;
    return this;
  }
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Beispiel: Hilfsklasse Objekterzeugung (4/4)

public MitarbeitendBuilder id(int id){
      this.id = id;
      return this;
    }
    
    public MitarbeitendBuilder addFachgebiet(Fachgebiet f){
      this.fachgebiete.add(f);
      return this;
    }

    public Mitarbeitend build() {
      Mitarbeitend erg = new Mitarbeitend();
      erg.setId(this.id);
      erg.setVorname(this.vorname);
      erg.setNachname(this.nachname);
      erg.setFachgebiete(this.fachgebiete);
      return erg;
    }   
}
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Erinnerung: clone(), Erzeugung echter Kopien (1/4)

• Java arbeitete mit Referenzen, Default-Implementierung von 
clone() liefert nur flache Kopien

• Interface Cloneable implementieren und clone() überschreiben

• Erinnerung: Strings sind immutable (immer neues Objekt)

Video

Video

https://youtu.be/-iqOX1c_U6g
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Erinnerung: clone(), Erzeugung echter Kopien (2/4)

• in Linie:   
  public Linie flacheKopie(){
    return new Linie(this.start, this.ende);
  }

 public static void main(String[] args) {
    Linie l1 = new Linie( new Punkt(1,2), new Punkt(3,4));
    System.out.println(l1);
    Linie l2 = l1.flacheKopie();
    System.out.println("l1 == l2 : " + (l1 == l2));
    l2.getStart().setX(42);
    System.out.println(l1);
    System.out.println(l2);
  } Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}

l1 == l2 : false
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}
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Erinnerung: clone(), Erzeugung echter Kopien (3/4)

• in Punkt:
public class Punkt implements Cloneable{ …

  @Override
  public Punkt clone() {  // darf Punkt statt Object stehen
    return new Punkt(this.x, this.y);
  }

• in Linie:
public class Linie implements Cloneable{ …

  @Override
  public Linie clone() {
    return new Linie(this.start.clone(), this.ende.clone());
  }
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Erinnerung: clone(), Erzeugung echter Kopien (4/4)

Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
l1 == l2 : false
Linie{start=Punkt{x=1, y=2}, ende=Punkt{x=3, y=4}}
Linie{start=Punkt{x=42, y=2}, ende=Punkt{x=3, y=4}}

public static void main(String[] args) {
    Linie l1 = new Linie( new Punkt(1,2), new Punkt(3,4));
    System.out.println(l1);
    Linie l2 = l1.clone();
    System.out.println("l1 == l2 : " + (l1 == l2));
    l2.getStart().setX(42);
    System.out.println(l1);
    System.out.println(l2);
  }

• Erinnerung an Praktikumsaufgabe: Ansatz funktioniert nur, wenn 
keine identischen Objektreferenzen mehrfach im zu clonenden 
Objekt enthalten
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Kombination von Pattern: Beispiel Redux

• Objekte arbeiten typischerweise mit Referenzen (Zeigern) zur 
Verknüpfung von Objekten, das ist schnell, kann aber undurchsichtig 
werden

• Beispiel: Oberflächen, mit denen verschiedene Objekte der 
Geschäftsebene bearbeitet werden

• Ansatz: zentraler State, der alle relevanten Informationen hält

• Ansatz: Veränderung des States nur über zentralen Store

• Ansatz: es entstehen bei Aktionen immer neue State-Objekte 

• ursprünglich für JavaScript entwickelt (basierend auf Flux)

• Ansatz auch Grundlage von Reactive Programming

• Folien motiviert durch: https://www.lestard.eu/2018/implement-your-own-

redux-in-java/ 

Skizze 0

Skizze 0
Skizze 1

Skizze 1
Skizze 2

Skizze 2
Skizze 3

Skizze 3
Skizze 4

Skizze 4

https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://www.lestard.eu/2018/implement-your-own-redux-in-java/
https://youtu.be/sDMPcTh5aa8
https://youtu.be/AcrXcnNCMMU
https://youtu.be/H_AMc-NwzY4
https://youtu.be/j3TNIPM9ONI
https://youtu.be/iETttIjEoVg
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Redux – Konzept Version 0 (1/2)

• Nutzung („App“) erzeugt Action-Objekt a, beinhaltet, was gemacht 
werden soll

• Nutzung ruft dispatch beim Store mit Action a auf

• Store ruft Reducer mit noch aktuellem State currentState (old) und 
Action a auf

• Reducer berechnet neuen State neu aus currentState  (old) und a

• Store:  currentState = neu

8.4
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Redux – Konzept Version 0 (2/2)
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Redux – Konzept Version 1 (1/12)

• offen, wie bekommen Interessierte, z. B. GUI-Komponenten 
Änderungen mit (Rückgabe neuen Zustands wäre denkbar)

• Lösung: Store bietet Observer-Observable-Lösung; d. h. Interessierte 
an (ggfls. bestimmten) Zustandsänderungen können sich anmelden 
(hier fasst Store konkreten und abstrakten Observable zusammen)

Video

Video

https://youtu.be/_D7XSzoMuuc
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Redux – Konzept Version 1 (2/12)
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Redux – Konzept Version 1 (3/12)

• Beispiel: Bearbeitung einer Taskliste

• „App“ und „Interessent“ sind Konsole (TextIO)

• Fachklassen sehen wie folgt aus: (entspricht „details“)

• Businessklassen befinden sich im (oder „hinter“ dem) State

• State kann auch als Model angesehen werden 
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Redux – Konzept Version 1 (4/12)

public class Action {
  // generell sollte auf String-Parameter, die auch andere
  // Werte kodieren sollen, aus Typsicherheitsgruenden
  // verzichtet werden
  private List<String> parameter;
  
  public Action(List<String> parameter) {
    this.parameter = parameter;
  }
  
  public Action(String... par1){
    this(Arrays.asList(par1));
  }

  public List<String> getParameter() {

    return this.parameter;

  }

}



Prof. Dr. 
Stephan Kleuker   

369OOAD

Redux – Konzept Version 1 (5/12) – App (1/2) 
public class TextIO {

  private Store store = new Store(new State(), new Reducer());

  public TextIO() {
    this.store.subscribe(new Subscriber(){
      @Override
      public void onChange(State s){
        System.out.println(s.getTaskList());
      } });  
  }

  public void dialog() {
    int eingabe = -1;
    while (eingabe != 0) {
      System.out.print(""
              + "(0) beenden\n"
              + "(1) Task hinzu\n"
      );
      eingabe = Eingabe.leseInt();
      // naechste Folie
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Redux – Konzept Version 1 (6/12) – App (2/2) 
switch (eingabe) {

        case 1: {
          this.newTask();
          break;
        }
      }
    }
  }

  private void newTask() {
    System.out.print("neue Aufgabe: ");
    String text = Eingabe.leseString();
    System.out.print("Bearbeitende Person: ");
    String responsible = Eingabe.leseString();
    Action action = new Action(text, responsible);
    this.store.dispatch(action);
  }
}
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Redux – Konzept Version 1 (7/12)

public class Store {

  private State currentState;
  private Reducer reducer;
  private List<Subscriber> subscribers = new ArrayList<>();

  public Store(State initialState, Reducer reducer) {
    this.currentState = initialState;
    this.reducer = reducer;
  }

  public State getState() {
    return this.currentState;
  }

  public void dispatch(Action action) {
    this.currentState = this.reducer.reduce(this.currentState
                                          , action);
    this.notifySubscribers();
  }
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Redux – Konzept Version 1 (8/12)

private void notifySubscribers() {
for (Subscriber s: this.subscribers){

s.onChange(this.currentState.clone());
}

  }
    
  public void subscribe(Subscriber subscriber) {
    this.subscribers.add(subscriber);
    subscriber.onChange(this.currentState.clone());
  }
}

public interface Subscriber {
void onChange(State state);

}
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Redux – Konzept Version 1 (9/12)

public class State implements Cloneable{

  private TaskList taskList;
  
  public State(){
    this.taskList = new TaskList();
  }

  private State(TaskList taskList) {
    this.taskList = taskList;
  }

  public TaskList getTaskList() {
    return this.taskList;
  }
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Redux – Konzept Version 1 (10/12)

  public void add(String text, String responsible){
    this.taskList.add(text, responsible);
  }
  
  @Override
  public State clone() {// nur fuer interne Tests, sonst clone()
    State result = new State(this.taskList.clone());
    return result;
  }
}
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Redux – Konzept Version 1 (11/12)

public class Reducer {

  public State reduce(State state, Action action) {
    if(action.getParameter().size() < 2){
      throw new IllegalArgumentException(
        "Hinzufuegen benoetigt zwei Parameter");
    }
    state.add(action.getParameter().get(0),
               action.getParameter().get(1));
    return state.clone();
  }
}



Prof. Dr. 
Stephan Kleuker   

376OOAD

Redux – Konzept Version 1 (12/12)

(0) beenden
(1) Task hinzu
1
neue Aufgabe: Redux lernen
Bearbeitende Person: ich
Task{id=1, text=Redux lernen, responsible=ich, finished=false}

(0) beenden
(1) Task hinzu
1
neue Aufgabe: Redux coden
Bearbeitende Person: mein Kumpel
Task{id=1, text=Redux lernen, responsible=ich, finished=false}
Task{id=4, text=Redux coden, responsible=mein Kumpel, 

finished=false}
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Redux – Konzept Version 2 (1/11)

Flexibilisierung des Ansatzes

• mehr Actions: Beispiel 
Delete-Operation

• ursprüngliche Action wird zur 
AddAction 

• Interface oder abstrakte 
Klasse  für Gemeinsamkeit

• offen: sinnvoller Umgang mit 
Parametern (Strings immer 
nutzbar, fast immer schwach)

• hier: individuelle Parameter

Video

Video

https://youtu.be/KkyLfsaReZQ
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Redux – Konzept Version 2 (2/11)

public class DeleteAction extends Action{
  private int deleteId;
  
  public DeleteAction(int id){
    this.deleteId = id;
  }

  public int getDeleteId() {
    return deleteId;
  }

  @Override
  public String toString() {
    return "DeleteAction{" + "deleteId=" + deleteId + '}';
  }
}
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Redux – Konzept Version 2 (3/11)

• in TextIO
…

case 2: {
this.deleteTask();
break;

}
…

 private void deleteTask() {
    System.out.print("welche Id: ");
    int id = Eingabe.leseInt();
    Action action = new DeleteAction(id);
    this.store.dispatch(action);
  }
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Redux – Konzept Version 2 (4/11)
public class Reducer {  

  public State reduce(State state, Action action) {
    this.reduceIntern(state, action);
    return state.clone();
  }

  private void reduceIntern(State state, Action action) {
    if (action instanceof AddAction) {
      state.add(action.getParameter().get(0),
               action.getParameter().get(1));
      return; // Alternative  für jede Action
    }
    if (action instanceof DeleteAction) {
      state.delete(((DeleteAction) action).getDeleteId());
      return; // State bekommt delete(int)-Methode
    }

    throw new IllegalArgumentException(
            "Action " + action + " nicht unterstuetzt");
  }
}
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Redux – Konzept Version 2 (5/11)

Flexibilisierung des Ansatzes
• Store-Varianten, die zusätzliche Aufgaben übernehmen
• Beispiel: Messe Zeit der Methodenausführung
• Ansatz: Decorator-Pattern, so Store-Varianten verknüpfbar
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Redux – Konzept Version 2 (6/11)

public interface StoreInterface {

  public void dispatch(Action action);
  public State getState(); // !!!! (1)
  public void subscribe(Subscriber subscriber);
  public void notifySubscribers();
  
}

• ursprüngliche Store-Klasse bleibt erhalten, realisiert Interface

• (1) getState()-Methode darf nur zum Testen genutzt werden, 
nur weil jemand Store kennt, ist der Aufruf noch lange nicht 
erlaubt

• (1) falls getState() für alle nutzbar sein soll, muss der State bei 
Rückgabe gecloned werden [macht Testen schwieriger]
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Redux – Konzept Version 2 (7/11)

public abstract class AbstractDecoratorStore 

                             implements StoreInterface {

  protected StoreInterface store;

  public AbstractDecoratorStore(StoreInterface store) {

    this.store = Objects.requireNonNull(store);

  }

  @Override

  public State getState() {  // nur fuer Testzwecke

    return this.store.getState();

  }
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Redux – Konzept Version 2 (8/11)

@Override

  public void dispatch(Action action) {

    this.store.dispatch(action);

  }

   

  @Override

  public void notifySubscribers() {

    this.store.notifySubscribers();

  }

  @Override

  public void subscribe(Subscriber subscriber) {

    this.store.subscribe(subscriber);

  } 

}
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Redux – Konzept Version 2 (9/11)

public class TimerStore extends AbstractDecoratorStore {

  

  private long start;

  

  public TimerStore(StoreInterface store) {

    super(store);

  }

  

  @Override

  public void dispatch(Action action) {

    start = System.nanoTime();

    super.store.dispatch(action);

    System.out.println("Dauer von " + action 

            + ": " + (System.nanoTime() - start));

  }

}
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Redux – Konzept Version 2 (10/11)

• Nutzung in TextIO
private StoreInterface store = new TimerStore(

new Store(new State(), new Reducer())
);

(0) beenden
(1) Task hinzu
(2) Task loeschen
1
neue Aufgabe: Flexibilisieren
Bearbeitende Person: ich
Task{id=1, text=Flexibilisieren, responsible=ich, finished=false}

Dauer von AddAction{parameter=[Flexibilisieren, ich]}: 8505520
(0) beenden
(1) Task hinzu
(2) Task loeschen
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Redux – Konzept Version 2 (11/11)



Prof. Dr. 
Stephan Kleuker   

388OOAD

Redux – Konzept Version 3 (1/4)

Systematisierung: Erzeugung von 
Actions bündeln

• hier korrekte Form garantieren

• konkrete Factory

• Aufzählungswert pro Action-
Art ist Möglichkeit, geht auch 
mit int-Parameter 

Video

Video

https://youtu.be/dhq36cjmBRI
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Redux – Konzept Version 3 (2/4)
public class ActionFactory {

  // auch mehrere create-Methoden denkbar
  public static Action create(Art command, Object... value) {
    try {
      switch (command) {
        case ADD:
          List<String> tmp = new ArrayList<>();
          for(Object o:value){tmp.add(o.toString());}
          if (tmp.size() < 2) {
            throw new IllegalArgumentException(
                    "Hinzufuegen benoetigt zwei Parameter");
          }
          return new AddAction(tmp);
        case DELETE:
          if (value.length == 0) {
            throw new IllegalArgumentException(
                    "DELETE benoetigt Parameter");
          }
          return new DeleteAction((Integer) value[0]);
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Redux – Konzept Version 3 (3/4)

        default:
          throw new IllegalArgumentException("Action(" 
             + command + "," + Arrays.asList(value) 
             + ") existiert nicht");
      }
    } catch (ClassCastException e) {
      throw new IllegalArgumentException("Action(" 
             + command + "," + Arrays.asList(value) 
             + ") hat falschen Parametertyp :" + e);
    }
  }
}
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Redux – Konzept Version 3 (4/4)

• in TextIO:
  private void deleteTask() {
    System.out.print("welche Id: ");
    int id = Eingabe.leseInt();
    Action action = ActionFactory.create(Art.DELETE, id);
    this.store.dispatch(action);
  }

  private void newTask() {
    System.out.print("neue Aufgabe: ");
    String text = Eingabe.leseString();
    System.out.print("Bearbeitende Person: ");
    String responsible = Eingabe.leseString();
    Action action = ActionFactory.create(Art.ADD
        , text, responsible);
    this.store.dispatch(action);
  }
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Redux – Fazit

• für kleine Beispiele recht aufwändig

• sehr leicht erweiterbar, gibt feste Stellen an denen ergänzt wird

• Funktionalität aber auf einige Klassen verteilt; gefährlich, wenn 
man bei Änderungen eine vergisst

• clone() des State-Objekts kann viel Zeit kosten

– State eher für Oberflächen-Daten als gesamte Daten

– pragmatisch überlegen, ob clone() für alles benötigt wird

• gibt kein direktes Ergebnis für Aufrufer; ggfls. weiteres Publish-
Subscribe für Antworten

• sehr gut für asynchrone Systeme (Action abschicken und 
weitermachen, anderer Thread erhält neue Zustände und wertet 
sie aus)
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Beschreibung der Pattern

Kontext: viele verschiedene gleichartige, aber unterscheidbare 

Objekte sollen verwaltet werden

Problem: Klasse soll verschiedene Objekte bearbeiten, benötigt 

aber nur deren gemeinsame Eigenschaften

Lösung: Einführung von zwei abstrakten Klassen, die zum Einen 

Objekterzeugung, zum Anderen Objektzugriff erlauben, Client 

muss nur diese Klassen kennen

Einsatzgebiete: ...    Varianten: ...         Struktur: s.o.          Beispiele:

Name: Abstract Factory

Patterngruppe: Objekterzeugung 

Kurzbeschreibung: Client kann mit einer AbstractFactory zu einer abstrakten 
Klasse passende Exemplare aus einem Satz konkreter Implementierungen für 
bestimmtes Produkt erzeugen, kennt den konkreten Typ des erzeugten 
Exemplars nicht

8.5
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GoF-Pattern Übersicht (nicht auswendig lernen)
Ei
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Aufgabenbereich

Erzeugung Struktur Verhalten

Factory Adapter Interpreter

Template

Abstract 

Factory

Adapter Command

Builder Bridge Observer

Prototype Decorator Visitor

Singleton Facade Memento

Composite Strategy

Proxy Mediator

Flyweight State

Chain of 

Responsibility
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Pattern in der UML

Pattern-Name im gestrichelten Kreis, verbunden mit eingekreisten
Klassen, verbunden mit Pattern und Benennung der Rollen
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Kritische Betrachtung von Pattern

• Pattern für Personen mit wenig Programmiererfahrung 
wenig geeignet, man muss erste Erfahrungen haben, um 
von Erfahrungen anderer Personen zu profitieren

• überlagernde Pattern schwer pflegbar, später in 
Implementierungen teilweise schwer erkennbar

• Pattern finden Einzug in Bibliotheken, Beispiel: Event-
Handling in Java ist „Observer-Pattern“, und 
Architekturen, Beispiel: MQTT (auch Obs-Obs)

• Generell sind Pattern ein wichtiger Teilschritt zum 
ingenieurmäßigen SW-Engineering

• Gute Programmier-Aufgabe: Entwickeln Sie kleine 
Beispiele zu allen GoF-Pattern !!!



Prof. Dr. 
Stephan Kleuker   

397OOAD

Patternorientierte Konzepte in der Programmierung

• Functional Interfaces / Lambda Ausdrücke

• Optional

• Streams in Java

• Dependency Injection

• Services in Java Modulen

• Kombination aus Factories und Annotationen

8.5

Video

Video

https://youtu.be/TuMNmF9Yui4
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• Ansatz: Funktionen als Parameter übergeben

• Vereinfachung für Interfaces, die genau eine Methode enthalten 
(auch SAM-Types  für Single Abstract Method, selber mit 
@FunctionalInterface)

@FunctionalInterface  // Interface mit genau einer Methode
public interface Ausgabe {
  public void ausgeben(String s);
}

public class AusgabeImpl implements Ausgabe { // Standard
  @Override
  public void ausgeben(String s) {
    System.out.println("Impl: " + s); 
  }
}

Java 8 – Functional Interfaces (1/3)
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public class Main {

  public static void main(String[] args) {
    Ausgabe impl = new AusgabeImpl();
    String text = "Text";
    impl.ausgeben(text);     // Impl: Text
    
    Ausgabe an2 = new Ausgabe(){
      @Override
      public void ausgeben(String s) {
        System.out.println("Ano: "+s);
      }       
    };
    an2.ausgeben(text);      // Ano: Text
    
    Ausgabe an3 = s -> System.out.println("Lambda: "+s);
    an3.ausgeben(text);      // Lambda: Text
    

Java 8 – Functional Interfaces (2/3) – mit Lambda
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Ausgabe an4 = System.out::println;
    an4.ausgeben(text);      // Text
    
    Ausgabe an5 = s -> {
      System.out.println("Lambda: "+s);
      System.out.println("noch ne Zeile");
    };
    an5.ausgeben(text);      // Lambda: Text
                             // noch ne Zeile
  }
}

• Lambda-Ausdrücke beschreiben Funktionen
 (Parameterliste) -> {Ausdruck bzw. Programmanweisungen}

• Spezifikation: JSR 335: Lambda Expressions for the JavaTM
Programming Language, https://jcp.org/en/jsr/detail?id=335

Java 8 – Functional Interfaces (3/3) – mit Lambda

https://jcp.org/en/jsr/detail?id=335
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Optional (1/5)

• Grundproblem der Programmierung sind undefinierte 
Referenzen, also NullPointerExceptions in Java

• immer wenn Objekt Ergebnis sein kann, muss programmierende 
Person damit rechnen einen Null-Wert zu erhalten

– d. h. man muss immer darauf prüfen

– oder Angebot (Schnittstelle) garantiert, dass es kein Null-Wert 
ist (kann man trauen?)

• bequeme Unart, wenn Ergebnis irgendwie nicht berechenbar, z. 
B. Parameter nicht ok, ist Ergebnis Null-Wert, als Abkürzung für 
„irgendwie ist der Aufruf gescheitert“

• Lösung: Ergebnis wird als Optional (generischer Typ) 
gekennzeichnet; Nutzung weiß damit, dass Ergebnis Null-Wert 
sein kann und muss reagieren

Video

Video

https://youtu.be/0hnxraAnjms


Prof. Dr. 
Stephan Kleuker   

402OOAD

Optional (2/5) – Problem mit null (1/2)

public class Einkaufsliste {
private Map<String,Integer> produkte;

  
  public Einkaufsliste() {
    this.produkte = new HashMap<>();
  }
  
  public void hinzu(String prod, int anzahl) {
    this.produkte
        .put(prod, this.produkte.getOrDefault(prod, 0) 
                   + anzahl);
  }
  
  public Integer anzahlVon(String prod) {

return this.produkte.get(prod);
  }
...
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Optional (3/5) – Problem mit null (2/2)

public static void main0(String[] args) {
    Einkaufsliste ek = new Einkaufsliste();
    ek.hinzu("Bier", 3);
    ek.hinzu("Wasabi", 5);
    ek.hinzu("Bier", 6);
    System.out.println("ek: " + ek);
    System.out.println("Bier " + ek.anzahlVon("Bier"));
    System.out.println("Beer " + ek.anzahlVon("Beer"));
    int moreBeer = ek.anzahlVon("Beer") + 1;
  }

ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]
Bier 9
Beer null
Exception in thread "main" java.lang.NullPointerException



Prof. Dr. 
Stephan Kleuker   

404OOAD

Optional (4/5) – Problemlösung (1/2)

• Variante in Einkaufsliste

 public Optional<Integer> anzahl(String prod) {
return Optional.ofNullable(this.produkte.get(prod));

    // alternativ (zeigt weitere Optional.Erzeuger):
//    if(this.anzahlVon(prod) == null) {

    //      return Optional.empty();
    //    }

//    return Optional.of(this.anzahlVon(prod));
  }

• Optional in java.util
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Optional (5/5) – Problemlösung (2/2)
public static void main(String[] args) {

    Einkaufsliste ek = new Einkaufsliste();
    ek.hinzu("Bier", 3);
    ek.hinzu("Wasabi", 5);
    ek.hinzu("Bier", 6);
    System.out.println("ek: " + ek);
    System.out.println("Bier " + ek.anzahl("Bier").orElse(0));
    System.out.println("Beer " + ek.anzahl("Beer").orElse(0));
    int moreBeer = ek.anzahl("Beer").orElse(0) + 1; 
    ek.anzahl("Bier")
      .ifPresent(b -> System.out.println(b + " mal da"));

if (!ek.anzahl("Beer").isPresent()) {
System.out.println("no beer");

    }
  }

ek: Einkaufsliste [produkte={Bier=9, Wasabi=5}]
Bier 9
Beer 0
9 mal da
no beer
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Streams ab Java 8

• Streams ab Java 8 sind gutes Beispiel zum Method Chaining (hier 
genauer Fluent Programming)

• allerdings werden Methoden pro Stream-Objekt abgearbeitet

• Sammlungen werden als Streams (Folgen) von Objektreferenzen 
angesehen

• Viele Stream-Methoden liefern wieder ein Stream-Objekt als 
Ergebnis

• Beispiele: Filtermethoden, Umwandlungen

• Streams kurzlebig, nur einmal nutzbar (dann wieder erstellbar)

• Hier nur kurzes Konzept (gibt weitere Methoden, zusätzliche 
Stream-Klassen, …)

• Hier auch weitere Nutzung von Lambda-Ausdrücken

Video

Video

https://youtu.be/2H5BcSCz84k
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Streams (1/14): POJO-Klasse (1/2)

public class Studierend {

   private int matnr;

   private String name;
   

   public Studierend(){ // Default-Konstruktor

   }

   public Studierend(int matnr, String name) {

     this.matnr = matnr;

     this.name = name;

   }

   public int getMatnr() {

     return this.matnr;

   }
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Streams (2/14): POJO-Klasse (2/2)

  public void setMatnr(int matnr) {

     this.matnr = matnr;

   }

   public String getName() {

     return this.name;

   }

   public void setName(String name) {

     this.name = name;

   }
   

   @Override

   public String toString(){

     return this.name + " (" + this.matnr +")";

   }

} // sinnvoll: equals und hashCode
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Streams (3/14): Ausführungsrahmen

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.stream.Stream;

import entity.Studierend;

public class Main {

private List<Studierend> studierende = new ArrayList<>();

public static void main(String[] args) {

Main m = new Main();

   m.generate(10);

   m.show1(); // hier zu untersuchende Methode

}

Z. B.: http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-
Stream-Operations/75.Java8.Fundamental-Stream-Operations.html 

http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html
http://www.angelikalanger.com/Articles/EffectiveJava/75.Java8.Fundamental-Stream-Operations/75.Java8.Fundamental-Stream-Operations.html
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Streams (4/14): Erzeugung und einfache Nutzung

  public void generate(int anzahl){

     for(int i = 0; i < anzahl; i = i + 2){

       this.studierende.add(new Studierend(i, "Ute"+i));

       this.studierende.add(new Studierend(i+1, "Udo"+i));

     }

   }

   public void show1(){

     this.studierende

         .forEach(s -> System.out.println(s)); 

   }
   

   // Hinweis: ist aequivalent zu

   // this.studierende

   //     .stream()

   //     .forEach(s -> System.out.println(s)); 

Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Ute4 (4)
Udo4 (5)
Ute6 (6)
Udo6 (7)
Ute8 (8)
Udo8 (9)
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Streams (5/14): Lambda - Beispiele

public void lambda(){

  this.studierende

      .forEach((Studierend s) -> {System.out.println(s);}); 

  // wenn Typen eindeutig, dann weglassen

  this.studierende.forEach((s) -> {System.out.println(s);}); 

  // nur ein Parameter, dann keine Klammern

  this.studierende.forEach( s -> {System.out.println(s);}); 

  // nur ein Ausdruck oder eine Zeile, dann keine Klammern

  this.studierende.forEach( s -> System.out.println(s));

  // wenn Objekt s Parameter der einzige aufgerufenen Methode

  this.studierende.forEach(System.out::println);

}
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Streams (6/14): Möglichkeit zur Parallelisierung

  public void show2(){ // Parallelisierung

     this.studierende

         .parallelStream()

         .forEach(s -> System.out.println(s)); 

   }

   // Hinweis: jede Collection in Stream

   // verwandelbar, z. B.

   // int[] arr= {9,7,3,1};

   // Arrays.stream(arr)

   //       .forEach(i -> System.out.println(i));

Ute6 (6)
Udo4 (5)
Udo6 (7)
Ute0 (0)
Ute2 (2)
Udo0 (1)
Udo2 (3)
Ute4 (4)
Ute8 (8)
Udo8 (9)
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Streams (7/14): Filterung

  public void show3(){

     this.studierende

         .stream()

         .filter(s -> s.getMatnr()% 3 == 0)

         .filter(s -> s.getMatnr()% 2 == 1)

         .forEach(s -> System.out.println(s)); 

   }

   // generell jede Boolesche Methode

   // zum Filtern nutzbar

Udo2 (3)
Udo8 (9)
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Streams (8/14): Filterung genauer (Einschub)

• Parameter in Stream-Methoden normale Objekte
public static Predicate<Integer> teiler(int val){

return x -> x%val == 0;

}

public static void main(String[] args) {

Stream<Integer> str = Stream.of(1,3,8,4,5,1,6);

   Predicate<Integer> pred1 = x -> x%2 == 0;

   str.filter(pred1)

      .forEach(System.out::println);

System.out.println(pred1.test(42));

   // kein sinnvoller Zugriff auf str mehr moeglich

   str = Stream.of(1,3,8,4,5,1,6);

   str.filter(teiler(3))

      .forEach(System.out::println);

}

8
4
6
true
3
6
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Streams (9/14): Abbildung / Umwandlung (map)

 public void show4(){

     this.studierende

         .stream()

         .filter(s -> s.getMatnr()% 3 == 0)

         .filter(s -> s.getMatnr()% 2 == 1)

         .map(s -> s.getMatnr() + ": " + s.getName())

         .forEach(s -> System.out.println(s)); 

   }

    // Map-Ergebnis kann Objekt beliebigen Typs sein

    // z. B. auch Object-Array

    // man sieht auch mehrzeile Funktion mit Rückgabe

    //    .map(s -> {

    //        String[] erg = {s.getName(), ""+s.getMatnr()};

    //        return erg;

    //     })

3: Udo2
9: Udo8

Video

Video

https://youtu.be/rQchxhVxHL8
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Streams (10/14): Detailanalyse
public void show5(){

   this.studierende

       .stream()

       .peek(s -> System.out.println(s))

       .filter(s -> s.getMatnr()%3 == 0)

       .peek(s -> System.out.println(s))

       .filter(s -> s.getMatnr()%2 == 1)

       .peek(s -> System.out.println(s))

       .map(s -> s.getMatnr() + ": " + s.getName())

       .peek(s -> System.out.println(s))

       .forEach(s -> System.out.println("------")); 

}

// logisch nacheinander abgearbeitet

// für Performance und Parallelität, startet 

// Bearbeitung pro Objekt mit terminaler Methode

// peek sieht Objekt, konsumiert es nicht

// !! kein reines Method Chaining !!

Ute0 (0)
Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Udo2 (3)
Udo2 (3)
3: Udo2
------
Ute4 (4)
Udo4 (5)
Ute6 (6)
Ute6 (6)
Udo6 (7)
Ute8 (8)
Udo8 (9)
Udo8 (9)
Udo8 (9)
9: Udo8
------
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Streams (11/14): Lazy Evaluation

public Set<Studierend> showLazy() {

   return this.studierende

         .stream()

         .filter(s -> {

           System.out.println(s);

           return s.getMatnr() > 2 && s.getMatnr() < 9;

         })

         .skip(2)

         .limit(3)

         .collect(Collectors.toSet());

}

... // in Main

System.out.println(m.showLazy());

Ute0 (0)
Udo0 (1)
Ute2 (2)
Udo2 (3)
Ute4 (4)
Udo4 (5)
Ute6 (6)
Udo6 (7)
[Udo4 (5), Udo6 
(7), Ute6 (6)]
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Streams (12/14): Zusammenfassung (reduce)

  public void show6(){

     System.out.println(

       this.studierende

           .stream()

           .filter(s -> s.getMatnr()%3 == 0)

           .filter(s -> s.getMatnr()%2 == 1)

           .map(s -> s.getMatnr() + ": " + s.getName())

           .reduce("Studis:", (s1,s2) -> s1 + ", " + s2)

     );

   }

   // reduce macht Schleife über alle Stream-Objekte

   // s1: bisheriges Ergebnis (initial "Studis")

   // s2: aktuelles Objekt aus dem Stream

Studis:, 3: Udo2, 9: Udo8
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Streams (13/14): Gruppierung

public void show7(){

   Map<Integer,List<Studierend>> aufgeteilt =

         this.studierende

             .stream()

             .collect(Collectors

                        .groupingBy(s -> s.getMatnr() % 3));

     aufgeteilt

         .forEach((k,v) -> System.out.println(k + ": " +v));  

}

// collect liefert Map mit Ergebniswert als key und Liste

// zugehöriger Objekte als value 

0: [Ute0 (0), Udo2 (3), Ute6 (6), Udo8 (9)]
1: [Udo0 (1), Ute4 (4), Udo6 (7)]
2: [Ute2 (2), Udo4 (5), Ute8 (8)]
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Streams (14/14): viele weitere Möglichkeiten

public static void main(String[] args) {

  IntStream.range(1, 4).forEach(System.out::println);
         

  double d = IntStream.range(1, 4)

                 .average()

                 .orElse(42);

  System.out.println("d: " + d);
         

  double d2 = IntStream.range(1, 1)

                 .average()

                 .orElse(0);

  System.out.println("d2: " + d2);
         

  IntStream.range(1, 4)

    .mapToObj(p -> new int[]{p, p*p})

    .forEach( a -> System.out.println(a[0] + " " + a[1]));  

}

1
2
3
d: 2.0
d2: 0.0
1 1
2 4
3 9
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Dependency Injection

woher kommen Objekte für Exemplarvariablen?

• Variante 1: Werte werden als Parameter übergeben, aus denen 
Objekte gebaut werden

• Variante 2: Objekte werden als Referenzen übergeben

– Optimierung: Typen der Objektvariablen sind Interfaces; so 
konkrete Objekte leicht austauschbar

• Variante 2 heißt Dependency Injection mit get- und set-
Methoden oder über Konstruktoren

• gutes Video: https://www.youtube.com/watch?v=IKD2-MAkXyQ 

• Standard-Framework: CDI (Contexts and Dependency Injection, 
JSR-365, https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html)

Video

Video

https://www.youtube.com/watch?v=IKD2-MAkXyQ
https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
https://youtu.be/c-w4Qb1sLd4
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Dependency Injection - Beispiel

Nutzend nutzend = new Nutzend(new Inter1RealA(42)

                         , new Inter2RealC(43)

                         , new Inter3RealD("Hallo"));
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CDI – Minibeispiel (1/4)

• Ein Klasse Nutzend, zentrales Objekt, wird in mehreren Klassen 
benötigt (soll hier Singleton sein; nur als Beispiel)
@Singleton // CDI-Anntotation

public class Nutzend {

   private int rechte = 42; 

   private String name = "Douglas";
        

   public int getRechte() {return this.rechte;}

   public void setRechte(int rechte) {this.rechte = rechte;}

   public String getName() {return name;}

public void setName(String name) {this.name = name;}

   @Override

   public String toString() {

     return "Nutzend [rechte="+rechte+", name=" +name+"]"; }

}



Prof. Dr. 
Stephan Kleuker   

424OOAD

CDI – Minibeispiel (2/4)
public class ControllerA {

   

   @Inject

   private Nutzend nutzend;
   

   @PostConstruct

   public void initialize() {

       System.out.println("startA");

   }

   @PreDestroy

   public void cleanup() {

       System.out.println("endeA");

   }

   public void aendereRechte(int wert) {

       this.nutzend.setRechte(wert);

   }
   

   public Nutzend getNutzend() { return this.nutzend; }

}
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CDI – Minibeispiel (3/4)
public class ControllerB {

   

   @Inject

   private Nutzend nutzend;
   

   @PostConstruct

   public void initialize() {

       System.out.println("startB");

   }

   @PreDestroy

   public void cleanup() {

       System.out.println("endeB");

   }

   public void aendereName(String wert) {

       this.nutzend.setName(wert);

   }  

   public Nutzend getNutzend() { return this.nutzend; }

}
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CDI – Minibeispiel (4/4)

public static void main(String[] args) {

    Weld weld = new Weld();

try (WeldContainer wC = weld.initialize()) {

ControllerA ca = wC.select(ControllerA.class).get();

      System.out.println("A: " + ca.getNutzend());

      ca.aendereRechte(41);

ControllerB cb = wC.select(ControllerB.class).get();

      cb.aendereName("Dirk");

      System.out.println("B: " + cb.getNutzend());

    }

  } startA
A: Nutzend [rechte=42, name=Douglas]
startB
B: Nutzend [rechte=41, name=Dirk]
endeA
endeB
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Java Module (1/5) – Services – Beispiel für Strategy

• neben dem vorgestellten Modulansatz unterstützt das Java-
Modulsystem Services (ursprüngliches Konzept ab Java 6)

• Service ist zunächst einfaches Interface (z. B. DienstInterface), 
zugehöriges Paket mit „exports“

• Service-Realisierer, z. B. Dienst1 realisieren Interface

– benötigt „requires“ Modul mit Interface

– hat parameterlosen Konstruktor

– kennzeichnet die Dienstrealisierung

–  provides DienstInterface with Dienst1

• Dienstnutzungen müssen dies kennzeichnen

–  uses DienstInterfaces 

– JVM ermöglicht über alle vorhandenen Implementierungen 
zu iterieren und zu nutzen

Video

Video

https://youtu.be/A6126vzwTPk
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Java Module (2/5) - Beispiel
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Java Module (3/5) – module-info.java Dateien

module bsp.dienst {
  exports dienst;
}

module bsp.dienst1 {
  requires transitive bsp.dienst;
  exports impl1;
  provides dienst.DienstInterface 
      with impl1.Dienst1;
}

module bsp.dienst2 {
  requires transitive bsp.dienst;
  exports impl2;
  provides dienst.DienstInterface 
      with impl2.Dienst2;
}

module bsp.modulnutzung {
  requires bsp.dienst1;
  requires bsp.dienst2;
  uses 

dienst.DienstInterface;
}
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Java Module (4/5) - Nutzung
public class Main {

public static void main(String[] args) {

    ServiceLoader<DienstInterface> sl 

        = ServiceLoader.load(DienstInterface.class);

    for(DienstInterface di: sl) {

      Ergebnis erg = di.mach1(1, 42);

System.out.println("Service: " + di.getClass()

          +" Q: " + di.qualitaet() 

          + " erg: " + erg.getText());

    }

  }

}

• es wird immer nur ein Service pro Ausführung erstellt (Singleton)

• es werden keine Objekte direkt erstellt (kein new; zwar erlaubt, 
verstößt aber gegen Konzept)

Beispielausgabe:
Service: class impl2.Dienst2 Q: 42 erg: 42
Service: class impl1.Dienst1 Q: 20 erg: 43
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Java Module (5/5) – Variante Factory

module bsp.dienstfactory {
  requires transitive bsp.dienst;
  exports impl3;
  provides dienst.DienstInterface with impl3.DienstFactory;
}

public class DienstFactory {
 public static DienstInterface provider() {
  return new DienstInterface() {
   @Override
   public Ergebnis mach1(int arg0, int arg1) {
    return new Ergebnis();
   }

   @Override
   public int qualitaet() { return 100; }
  };
 }
}
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Nutzung von Komponenten

• Komponente: konfigurierbare, 
übersetzte Software, die klare 
Funktionalität anbietet 

• Beispiel: Komponente bietet 
Kämpfer-Objekte an

• benötigt Klasse, die die 
Erzeugung ermöglicht
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Validierungs-Framework (Bean Validation 1.1, JSR 349)

public abstract class Kaempfend {

    @Min(value=0, message = "Gesundheit nicht negativ")

    protected int gesundheit;

    

    @Min(value=3, message="minimale Staerke beachten")

    @Max(value= 15, message="maximale Staerke beachten")

    protected int staerke;

    @Min(value=5, message="minimales Geschick beachten")

    @Max(value= 20, message="maximales Geschick beachten")

    protected int geschick;

    

    // wie vorher
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public static void main(String[] s) {
   AbstractKaempfendFactory kf = KaempfendArtFactory
            .kaempfendFactoryErstellen("basic");
   Kaempfend k = kf.kaempfendErstellen(2);
   k.setGesundheit(-1);
   k.setGeschick(22);
   ValidatorFactory factory = Validation
             .buildDefaultValidatorFactory();
   Validator validator = factory.getValidator();
   for (ConstraintViolation<Kaempfend> c : 
                               validator.validate(k)) {
     System.out.println(" :: " + c.getMessage());
   }
 }

Beispielnutzung der Validierung

:: maximales Geschick beachten
 :: minimale Staerke beachten
 :: Gesundheit nicht negativ
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Persistenz-Framework (JPA 2.1, JSR 338) 

@Entity

public abstract class Kaempfend {

    @Id

    @GeneratedValue(strategy = GenerationType.AUTO)

    protected int knr;

    @Min(value = 0, message = "Gesundheit nicht negativ")

    protected int gesundheit;

    @Min(value = 3, message = "minimale Staerke beachten")

    @Max(value = 15, message = "maximale Staerke beachten")

    protected int staerke;

    @Min(value = 5, message = "minimales Geschick beachten")

    @Max(value = 20, message = "maximales Geschick beachten")

    // wie vorher, konkrete Klassen auch mit @Entity annotiert
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public static void main(String[] s) {
   AbstractKaempfendFactory kf = KaempfendArtFactory
                .kaempfendFactoryErstellen("basic");
   Kaempfend k = kf.kaempfendErstellen(2);
   k.setGesundheit(100);
   k.setStaerke(7);
   k.setGeschick(9);      
   EntityManagerFactory emf = Persistence
                .createEntityManagerFactory("KaempfendPU");
   EntityManager em = emf.createEntityManager();
   em.getTransaction().begin();
   em.persist(k);
   em.getTransaction().commit();
   em.close();
   emf.close();
 }

Beispielnutzung der Persistenz

SELECT * FROM Kaempfend
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7. Konkretisierungen im 
Feindesign

7.1  Zustandsdiagramme

7.2  Object Constraint Language

Video

Video

https://youtu.be/1GS2Gj_O0lQ
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Verfeinerte Modellierung

• Durch die verschiedenen Sichten der Systemarchitektur wird der 
Weg vom Anforderungsmodell zur Implementierung beschrieben

• Es bleiben offene Themen:

– Wie bekomme ich ein gutes Klassendesign (nächstes Kapitel)?

– Wie kann man das komplexe Verhalten von Objekten noch 
beschreiben (Klassendiagramme sind statisch, 
Sequenzdiagramme exemplarisch)?

 Antwort: Zustandsdiagramme

– Wie kann man bei der Klassenmodellierung Randbedingungen 
formulieren, was in Klassendiagrammen (Bedingungen in 
geschweiften Klammern) nur bedingt möglich ist?

 Antwort: Object Constraint Language
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Zustandsdiagramme

• generell wird der Zustand eines Objekts durch die Werte seiner 
Exemplar- und Klassenvariablen beschrieben

• Häufig wird der Begriff Zustand auch für eine spezielle 
Exemplarvariable genutzt, die z. B. über eine Enumeration 
realisierbar ist

• z. B. : Ampel: rot, rotgelb, gelb, grün
• z. B. : Projekt: vorbereitet, grob geplant, mitarbeitende 

Personen zugeordnet, verschoben, in Bearbeitung, in 
Endabnahme, in Gewährleistung, beendet

• Übergänge zwischen den Zuständen werden durch Ereignisse, 
zumeist Methodenaufrufe, veranlasst

• Übergänge lassen sich durch ein Zustandsdiagramm 
(ursprünglich Statechart nach D. Harel) spezifizieren

• Zustandsautomaten spielen auch in der theoretischen und 
technischen Informatik eine zentrale Rolle

7.1
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Struktur von Zustandsdiagrammen

• Zustandsdiagramm gehört zu einem Objekt einer Klasse

• alle Angaben für Zustände und Transitionen sind optional

• Transition wird ausgeführt, wenn Ereignis eintritt und 
Bedingung erfüllt ist

• ohne Ereignis und Bedingung wird Transition dann ausgeführt, 
wenn Entry, Do, und Exit durchlaufen

• Einfacher Automat muss deterministisch sein
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Beispiel: Zustandsdiagramm eines Projekts

• man erkennt: nach Planung keine Planungsänderung
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Hierarchische Zustände
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Parallele Unterzustände

• unabhängige Teilzustände 
können in parallelen 
Zuständen bearbeitet 
werden

• ohne Parallelität müsste 
Kreuzprodukt der Zustände 
der parallelen Automaten 
betrachtet werden

Video

Video

https://youtu.be/rLL77u-pWP4
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Beispiel: Uhr
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Zustandsmodellierung und Realzeitsysteme

• in klassischen OO-
Programmen gibt es 
meist wenige zentrale 
Klassen, für die sich eine 
Zustandsmodellierung 
anbietet

• In Systemen mit Zeit kann 
Zustandsmodellierung 
Zeitbedingungen 
beinhalten

• auch warte(5 sek)
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Event [Condition] / Action

• Transitionsbeschriftung Ereignis[Bedingung]/Aktion

• Was ist Ereignis? Hängt von Applikation ab

– Methodenaufruf

– Ereignis im Programm (Variable wechselt Wert)

– technische Systeme: Signale

typisches Beispiel: Steuersysteme

• erhalten Signale (->Ereignisse) von Sensoren wenn etwas 
passiert (z. B. ein-/ausgeschaltet)

• lesen Werte anderer Sensoren, Teilsysteme (-> Bedingung), die 
Entscheidungen beeinflussen

• senden Signale (-> Aktion) an andere Systeme
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Microsteps und Macrosteps (1/2)

• Actions eines Teilautomaten können Events eines anderen 
Teilautomaten sein

• Microstep: einzelne Schritte betrachten

Start -> K(A1,B1) –p-> K(A2,B1) –x-> K(A2,B2) –q-> K(A3,B2) –y-
> K(A3,B3) –z-> K(A3,B1) –r-> K(A1,B1)
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Microsteps und Macrosteps (2/2)

• Macrostep: nur Zustände nach vollständiger Bearbeitung 
betrachten (Ausnahme: Livelock)

 Start -> K(A1/B1) –p-> K(A3/B3) –z-> K(A1/B1)

• typischerweise nur an Macrosteps interessiert
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Beispiel: Start-Stopp-Automatik (1/4)

• zentrale Aufgabe: Start-Stopp-Automatik stellt den Motor 
immer dann selbstständig aus, wenn dieser nicht mehr 
benötigt wird (z. B. Halt an Ampel)

• Randbedingung: keine Abschaltung bis maximal 3 Grad und ab 
minimal 30 Grad 

• Ablauf: 

– Zündschlüssel einstecken, Motorstartknopf drücken, dann 
startet Automatik

– Motorein- und Abschaltung wird anhand der Kupplung 
erkannt

– Automatik kann auch wieder gestoppt werden

• [Frage: was fehlt alles zur Realität]

Video

Video

https://youtu.be/m7hk_gWw6yI
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Beispiel: Start-Stopp-Automatik (2/4)

• Klärung, von welche Sensoren werden Signale empfangen:

– Zündschloss: start und ende

– Kupplung: leerlauf und druecken

– Automatiksteuerung: an und aus

• Klärung, welchen Sensoren können abgefragt werden:

– Temperaturwert temp in lokaler Variablen

• Klärung an welche Aktoren Signale geschickt werden

– Motorsteuerung: motor_an und motor_aus
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Beispiel: Start-Stopp-Automatik (3/4)

„Blockschaltbild“



Prof. Dr. 
Stephan Kleuker   

452OOAD

Beispiel: Start-Stopp-Automatik (4/4)
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Umsetzung von Zustandsdiagrammen

• Abhängig davon, wie formal die Zustände und Transitionen 
spezifiziert sind, kann aus Zustandsdiagrammen Programmcode 
erzeugt werden

• Typisch: Iteratives Vorgehen: informelle Beschreibungen werden 
schrittweise durch formalere ersetzt

• Ereignisse können für folgendes stehen

– Methodenaufrufe

– externe Ereignisse des GUI (-> Methodenaufruf)

– Teilsituation, die bei der Abarbeitung einer Methode auftreten 
kann

• Automat wird zunächst zu komplexer Methode, die z. B. anhand 
der Zustände in Teilmethoden refaktoriert werden kann
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GUI als Zustandsautomat
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Android als Zustandsdiagramm
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Klassendiagramm und versteckte Randbedingungen

Welche Randbedingungen vermuten Sie?
7.2

Video

Video

https://youtu.be/5lc7kVYcX8s


Prof. Dr. 
Stephan Kleuker   

457OOAD

Grundidee von Object Constraint Language (OCL)

• Rahmenbedingungen (Constraints) definieren, die von 
Objekten bzw. Objektmengen eingehalten werden können

• Constraints sind prüfbar

• möglichst einfach formulierbar (ursprünglich zur Formulierung 
von Geschäftsregeln für Versicherungsanwendungen, 
[Syntropy, IBM])

• Angepasst an Objektorientierung:

– Zugriff auf Exemplarvariablen

– Zugriff auf Methoden, die keine Objektveränderungen 
vornehmen

– Vererbung wird beachtet

• typisiert, Collections wichtiger Typ
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Einfache Bedingungen für Objekte (Invarianten)

• Die Matrikelnummer ist mindestens 10000
context Studierend inv hoheMatrikelnummern:

self.matnr >= 10000

• eine Variante:
context s:Studi inv:

s.matnr >= 10000

•  context gibt eindeutig an, um welche Klasse es geht

• Strukturierung durch Nutzung der Paketstruktur
package com::meineFirma::meineSW

  context Studierend inv: ...

  context Studierend inv: ...

endpackage
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Vor- und Nachbedingungen für Methoden

• Wenn Studierend-Objekt da, dann hört er Veranstaltungen
context Studierend::belegteVeranstaltungen():Integer

pre studiIstDa: self.freisemester = false

post hoertVeranstaltungen: result > 0

• Man kann auf Parameter der Methoden zugreifen

•  result ist vordefiniert (vom Rückgabetyp)

• Erhöhung der Anzahl der belegten Veranstaltungen:
context Studierend::veranstaltungEintragen(v: Veranstaltung)

pre: nichtBelegt(v)

post: self.belegteVeranstaltungen()@pre  

                  = self.belegteVeranstaltungen()-1

•  self.belegteVeranstaltungen()@pre, für Ergebnis vor der 
Methodenausführung
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Einschub: Basistypen und Operationen

• Jeder OCL-Ausdruck hat einen Typ

• Verknüpfe Ausdrücke müssen vom Typ her passen

• Geringe Typanpassungen möglich
Typ Beispielwerte

Boolean true, false

Integer 1, -5, 42, 4242424242

Real 3.14, 42.42, -99.999

String 'Hallo Again', 'Heidi', ''

Typ Beispieloperationen

Boolean and,or,xor,not,implies,if then else endif

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

String concat(), size(), substring()
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Zugriff auf Assoziationen

• Zugriff auf verbundene Elemente möglich, Kardinalitäten 
beachten (einfach oder Menge)

• wenn Relation benannt, dann dieser Name

 sonst über Name der verbundenen Klasse (klein)

• Lehrkräfte laufender Veranstaltungen sind nicht im Ausland
context Veranstaltung inv:

self.status = Veranstaltungsstatus::laeuft 

       implies 

       not self.lehrkraft.imAusland 

• Man sieht auch Zugriff auf eine Enumeration

Video

Video

https://youtu.be/mjlNRDIIUBU
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Assoziationsklassen

• Ausgehend von Assoziationsklassen kann mit Punktnotation auf 
beteiligte Klassen (deren Objekte) mit deren Rollennamen 
zugegriffen werden

• Prüfungsnoten nur für abgeschlossene Veranstaltungen
context Pruefung inv:

 self.studienfach.status =

     Veranstaltungsstatus::abgeschlossen

  implies 

     (self.note>=1.0 and self.note<=5.0) 
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Beispiele: Mengenoperationen (1/2)

• bei der Betrachtung zugehöriger Objekte ist das Ergebnis meist 
eine Collection von Objekten

• in OCL auch: Set, OrderedSet, Sequence, Bag

• auf Collections existieren verschiedene Methoden, genereller 
Aufruf

collection -> methode(<parameter>)

• Ergebnis kann wieder eine Collection oder ein Wert eines 
anderen Typs sein

• Studi macht höchstens 12 Veranstaltungen

context Studierend inv:

self.studienfach 

       -> select (s | s.status =        

                    Veranstaltungsstatus::laeuft) 

       -> size() <= 12 
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Beispiele: Mengenoperationen (2/2)

• Korrektheit von hatTheorieBestanden
context Studierend::hatTheorieBestanden():Boolean

post: result = self.pruefung 

   -> exists( p | p.note<=4.0

              and p.studienfach.titel='Theorie'))

• Korrektheit für bestandeneVeranstaltungen
context Studierend:: 
bestandeneVeranstaltungen():Collection

post: result=self.pruefung

        ->select( p | p.note<=4.0)

        ->iterate(p:Pruefung;  

            erg:Collection=Collection{}| 

               erg->including(p.studienfach))
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9. Implementierungsaspekte
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Video

Video

https://youtu.be/ZjAWBLWZl2E
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Beispiel: Rahmenbedingungen für SW-Architektur

• Berücksichtigung von speziellen SW-Schnittstellen nicht 
objektorientiert entwickelter Systeme, z. B. von Application 
Programming Interfaces (API) fremder SW

• Berücksichtigung/Benutzung existierender 
Datenhaltungssysteme, z. B. Vorgabe des 
Datenbankmanagementsystems (DBMS)

• Berücksichtigung bestimmter Design-Prinzipien, z. B. 
Gesamtsteuerung mit Enterprise Java Beans (JEE) oder .NET für 
die Realisierung

• Alt-Software (z. B. in COBOL), so genannte Legacy-Systeme 
müssen eingebunden werden; Einsatz einer Middleware (z. B. 
Common Object Request Broker Architecture, CORBA)

9.1
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Einfluss nichtfunktionaler Anforderungen

Beispiel: Sicherheit (Security)

• Alle Nachrichten müssen über den speziellen Krypto-Server 
laufen; dieser hat bestimmte Bandbreite (Bottle-neck); SW 
muss auf allen Seiten möglichst viel ohne Verbindung arbeiten 
können (Redundanz wird erlaubt)

Beispiel: Sicherheit (Safety)

• Berechnungen zur Steuerung müssen redundant auf drei 
Rechnern mit unterschiedlichen Verfahren durchgeführt 
werden

Beispiel: Performance

• Die rechenintensiven 3D-Berechnungen müssen sehr schnell 
sein; dies kann zum  Einsatz von C mit langen komplexen 
Funktionen führen 
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Rahmenbedingung: verteilte Systeme

• in der klassischen OO-Programmierung gibt es einen 
Programmablauf (Prozess) und man nutzt synchrone Aufrufe: 
Objekt O1 ruft Methode von Objekt O2 auf; O2 übernimmt die 
Programmausführung und antwortet dann O1

• bei verteilten Systemen laufen viele Prozesse parallel ab, die 
Informationen austauschen können

• synchroner Aufruf ist möglich, bedeutet aber, dass Verbindung 
aufgebaut werden muss und Sender bzw. Empfänger auf 
Bereitschaft warten müssen

• asynchroner Aufruf bedeutet, dass Sender Aufruf abschickt und 
danach weiterarbeitet; später prüft, ob ein Ergebnis vorliegt

• asynchrone Aufrufe sind schneller (nur abschicken); Prozesse sind 
aber schwer zu synchronisieren

• die Herausforderung effizienter verteilter Systeme hat nicht die 
eine Lösung und wird Sie Ihr Informatik-Leben-lang verfolgen

9.2
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Probleme der Aufrufmechanismen

synchroner Aufruf

asynchroner Aufruf 

Prozess A

Problem: Deadlock

Prozess B Prozess C

Problem: B denkt, x hat vor 
y stattgefunden

Problem: C denkt, x hat vor 
y stattgefunden, A denkt, 
y hat vor x stattgefunden

warten auf
Antwort

warten auf
Antwort
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Typische Probleme verteilter Systeme

• Deadlocks: kein Prozess/Thread kann voran schreiten

• partielle Deadlocks: einige Prozesse im Deadlock, andere nicht

• Livelocks: System versucht, sich zyklisch zu synchronisieren, ohne 
dass das System voran schreitet

• (starke) Fairness : kommen Prozesse, die immer mal wieder darauf 
warten, in den kritischen Bereich zu kommen, auch dran

• (schwache) Fairness: kommen Prozesse, die immer darauf warten, 
in den kritischen Bereich zu kommen, auch dran

•  synchronized() in Java (Methode wird garantiert ohne 
Parallelnutzung des aufgerufenen Objekts genutzt) hat starken 
negativen Einfluss auf die Laufzeit

• Erinnerung/Ausblick: Notwendige Transaktionssteuerung bei 
Datenbankmanagementsystemen



Prof. Dr. 
Stephan Kleuker   

471OOAD

Beispiel: Varianten von Client-Server-Systemen

• Thin Client: Hier nur 
Datenannahme, 
Weiterleitung, Darstellung, 
keine komplexen 
Berechnungen

• Beispiele: Web-Browser, DB-
Clients

• Fat Client: Client führt eigene 
komplexe Berechnungen aus; 
nutzt Server nur zur Verwaltung 
zentraler Informationen und zum 
Nachrichtenaustausch

• Beispiel: vernetzbare Stand-
alone-Spiele (Autorennen)

Client

Server

Netzwerk
Client

Server

Netzwerk
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Beispiel: 3-Tier-Architektur
Verteilung:

• Nur Darstellung (GUI) beim 
Client

• eigener Server für Anwendung

• eigene Datenspeicherung

Vorteile:

• benötigte DB-Verbindungen 
können angepasst werden 
(Kosten) 

• Datenbank nicht direkt für 
Client zugreifbar (Sicherheit)

• Änderungen einer Schicht 
müssen andere Schichten nicht 
beeinflussen

Client

Präsentationsschicht

Server für Anwendung

eigentliche Anwendungs-SW

Datenbank-Server

persistente Datenhaltung
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Nutzung von Programmbibliotheken

• Programmbibliotheken stellen Standardlösungen für häufig 
wiederkehrende Probleme dar

• typische Nutzung: entwickelnde Person erzeugt und ruft Objekte 
(Klassen) der Bibliothek auf

• Bibliotheken sind geprüft, (hoffentlich) für Laufzeiten optimiert
• Dokumentation von Bibliotheken wichtig zum effizienten Einsatz 

(was rufe ich wann auf)
• Je größer der Verbreitungsgrad, desto einfacher die 

Weiterverwendung von Ergebnissen (großer Vorteil der Java-
Klassenbibliothek)

• Grundregel für erfahrene entwickelnde Personen: Erfinde das Rad 
niemals zweimal, weiß aber, wo viele Blaupausen für viele 
verschiedene Räder sind

• Grundregel für mit Informatik-Beginnende: Lerne zu verstehen, 
wie man das erste Rad baut, baue das erste Rad und lerne warum 
man wie die Blaupause variieren kann

9.4
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Idee von Komponenten

• Komponenten sind komplexe in sich abgeschlossene  „binäre“ SW-
Bausteine, die größere Aufgaben übernehmen können

• Ansatz: SW statt aus kleinen Programmzeilen aus großen 
Komponenten (+ Klebe-SW) zusammen bauen

• Komponenten werden konfiguriert, dazu gibt es get-/set-Methoden 
(Schnittstelle)  oder/und Konfigurationsdateien

• Beispiel Swing-Klassen, wie JButton haben (u. a.) 
Komponenteneigenschaft; man kann u. a. einstellen:
– Farben (Hintergrund, Vordergrund)
– Schrifttypen
– Form der Ecken
– dargestelltes Bild

• Komponenten sind themenorientiert und können unterschiedliche 
Aufgaben erfüllen (z. B. Daten filtern, Werte überwachen)

9.5
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Idee der Framework-Technologie

• statt vollständiger SW werden Rahmen programmiert, die um 
Methodenimplementierungen ergänzt werden müssen

• Frameworks (Rahmenwerke) können die Steuerung 
gleichartiger Aufgaben übernehmen

• typische Nutzung: entwickelnde Person instanziiert 
Framework-Komponenten, d. h. übergibt seine Objekte zur 
Bearbeitung durch das Framework; typischer Arbeitsschritt: 
Framework steuert, d. h. ruft  Methode der entwickelnden 
Person auf

• eventuelles Problem: schwieriger Wechsel zu anderem 
Framework oder bei Ablösung des Frameworks

9.6
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Ziele komplexere Framework-Ansätze

neben Spezialaufgaben werden hauptsächlich folgende Aufgaben 
gelöst

• sorgenfreies Lesen und Speichern von Objekten in 
Datenbanken (Persistenz)

• sorgenfreie konsistente Verteilung von Informationen 
(Prozesskommunikation)

• sorgenfreie Steuerung verteilter Abläufe mit Überwachung von 
Transaktionen

• Beispiele sind Jakarta Enterprise Edition, Microsoft Dot-Net-
Technologie, Spring, Hibernate, viel im Bereich AJAX
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Persistente Datenhaltung

Typische Java-Möglichkeiten

• Anschluss an klassische relationale DB über JDBC (typisch bei 
Anbindung an existierende DB)

• Nahtlose Integration der Datenhaltung in die Entwicklung 
(Ansatz: statt Objekt zu erzeugen Methode holeObjekt(), später 
sichere Objekt), typisch für Hibernate (häufig genutzt, bei 
kleinen Spezialanwendungen, z. B. Handy, Organizer)

• relativ nahtlose Integration durch zusätzliche Software, die 
objekt-relationales Mapping übernimmt

• Nutzung eines Frameworks, das Persistenz und 
Transaktionssteuerung übernimmt, Enterprise Java Beans

9.7
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Beispiel: JavaBeans (kleiner Ausschnitt)
• Java unterstützt Reflektion, damit kann ein Objekt nach seiner 

Klasse, seinen Exemplarvariablen und Exemplarmethoden befragt 
werden

• Hält man sich an folgende einfache Regel für eine Klasse
– sie implementiert Serializable (geht nur, wenn alle 

verwendeten Typen Serializable)
– für alle Exemplarvariablen gibt es die Standard get- und set-

Methoden
– es gibt einen leeren Default-Konstruktor

 dann sind einige Framework-Ansätze nutzbar
– Objekte speichern und lesen in XML
– Nutzung als JavaBeans (sinnvoll weitere Standardmethoden)
– Objekte speichern in einer Datenbank mit JPA, als Entity
– Objekte im Binärformat lesen und schreiben (reicht 

Serializable)
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XMLEncoder und XMLDecoder (Ausschnitt)
private void speichern(String datei){

  try (XMLEncoder out= new XMLEncoder(

         new BufferedOutputStream(new FileOutputStream(datei)))){

    out.writeObject(table.getModel());

  } catch (FileNotFoundException e) {} //wegschauen 

}

private void laden(String datei){

try ( XMLDecoder in= new XMLDecoder(

         new BufferedInputStream(new FileInputStream(datei)))){

    table.setModel((DefaultTableModel)in.readObject());

    } catch (FileNotFoundException e) {} //wegschauen

}



Prof. Dr. 
Stephan Kleuker   

480OOAD

Refactoring

• Komplexe Methoden sollen grundsätzlich vermieden werden
• Lösungsansatz: Refactoring, d. h. ein Programmblock wird in einer 

Methode mit selbsterklärendem Namen ausgegliedert
• Wann ist Ausgliederung möglich?

– Im Block darf nur eine lokale Variable auf der linken Seite einer 
Zuweisung stehen

• Wie funktioniert Refactoring?
– Bestimme alle lokalen Variablen, die im Block lesend genutzt 

werden; diese werden zu Parametern
– Falls eine lokale Variable links in einer Zuweisung vorkommt, 

bestimmt sie den Rückgabetypen (sonst void)
• Exemplarvariablen spielen keine Rolle, da auf sie in allen 

Methoden der Klasse zugegriffen werden darf
• Probleme bei mehr als einer zu verändernden lokalen Variablen 

oder bei enthaltenen Rücksprüngen (aufwändig regelbar)

9.10
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public int ref(int x, int y, int z){

int a = 0;

if(x > 0){

a = x;

x++;

--y;

a = a + y + z;

}

return a;

}

Refactoring – Positives Beispiel

public int ref(int x, int y, int z){
int a = 0;
if(x > 0){
a = this.mach(x, y, z);

}
return a;

}

private int mach(int x, int y, int z){
int a;
a = x;
x++;
--y;
a = a + y + z;
return a;

}
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public int ref2(int x){

int a = 0;

int b = 0;

int c = 0;

if(x > 0){

a = x;

b = x;

c = x;

}

return a + b + c;

}

Refactoring – nicht einfaches Beispiel 
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Refactoring – (nicht) einfaches Beispiel in C++

int Rechnung::ref2(int x){
  int a = 0;
  int b = 0;
  int c = 0;
  if (x > 0) {
    abcAnpassen(a, b, c, x);
  }
  return a + b + c;
}

void Rechnung::abcAnpassen(int& a, int& b, int& c, int x){
  a = x;
  b = x;
  c = x;
}
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Domain Specific Languages (DSL)

• Problem: General Purpose Sprachen sind sehr mächtig, aber für 
spezifische Entwicklungsbereiche geht sehr viel Energie in für 
den Bereich gleichartige Programmierung

• Spezielle Entwicklungssprache für individuellen Bereich, 
spezielle komplexe Hochsprachelemente anbietet 

• Neue Sprache z. B. mit XML (Syntax mit XML-Schema) 
darstellbar; Umwandlung in Programm mit Übersetzung (z. B. 
XSLT) ; hilfreich ist Visualisierungsmöglichkeit der DSL

• Hinweis: UML (evtl. mit konkreter Ausprägung) kann mit MDA-
Transformationen auch als spezieller DSL-Ansatz angesehen 
werden

9.8



Prof. Dr. 
Stephan Kleuker   

485OOAD

DSL Prozesse
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Model Driven Architecture
• Ansatz: Häufig benötigt man die gleichen Ideen (z. B. 

Sortierverfahren) in sehr unterschiedlichen Sprachen; warum 
nicht in einer Sprache modellieren und dann in andere 
Sprachen transformieren?

• Da Sprachen extrem unterschiedlich, soll Modellumwandlung 
schrittweise passieren

• Zur Modellbeschreibung wird eigene Sprache mit eigener 
Semantik benötigt (Metamodell und Metametamodell)

• Ansatz: Umwandlung des CIM mit Transformationsregeln in ein 
PIM und dann ein PSM
  CIM: Computer Independent Model

  PIM: Platform Independent Model
  PSM: Platform Specific Model
• z. B. UML-Modell, dann Realisierungssprache wählen, dann 

HW-Plattform mit Kommunikationsprotokollen wählen (zwei 
parametrisierte Transformationen)

9.9
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Prozess der MDA (Theorie)

• Realität: häufig nur eine 
konkrete Ebene

• viele manuelle  
Einstellungen für die 
Transformation

• Generieren gibt es schon 
lange (YACC, Dateien zur 
Beschreibung von Fenstern, 
von UML zum 
Programmskelett)
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Formaler Hintergrund der MDA

Modellart1 Modellart2
Transformations-

regeln

Transformations-

model

Meta Object Faciliy (MOF)

konkretes

Modell1

konkretes

Modell2

konkrete Menge von

Regeln mit konkreten 

Parametern

Instanz von Instanz vonInstanz von

Semantik definiert durch

Abarbeitungsreihenfolge
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Model Driven Software Development

Verwaltung

liname:String

Element

name:String

typ:String

*

element

public class {Verwaltung.liname} {
  <foreach Element e:Verwaltung.element>
    private List<{e.typ}> {e.name};
}

Metamodell

Codegenerator

Modell

generierter Code
Verwaltung
   liname=„Hauptliste“
   Element
      name=„bestellende“
      typ=„Bestellend“
   Element
      name=„produkte“
      typ=„Produkt“

public class Hauptliste {
    private List<Bestellend> bestellende;
    private List<Produkt> produkte;
}

z. B. https://projects.eclipse.org/projects/modeling.emf.mwe 

https://projects.eclipse.org/projects/modeling.emf.mwe
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