

Seite 1 von 3

Programmierung 1

Wintersemester 2025/26
Aufgabenblatt 12

Nur zum Selbststudium!

0.12 Aufgabe
Geben Sie die Lösungsworte der Quizze aus der Lernnotiz an.

39. Aufgabe (10 Punkte, Nutzung mehrdimensionaler Arrays, VL 22)

Zur Veranschaulichung des Ergebnisses ist https://kleuker.iui.hs-
osnabrueck.de/querschnittlich/prog1/gameOfLive.html nutzbar. Da das
Programm nicht in Java geschrieben ist, sieht das Interaktionsbrett
etwas anders aus. Sie können auch ein Feld mit der Wahrscheinlichkeit
0 erstellen, mit der Maus Zellen markieren und sehen was nach einem
Schritt passiert.
Schreiben Sie eine Simulation von Conways „Game of Life“. Die
Simulation läuft auf einem Gitter der Größe n*n, wobei n vom Nutzer
eingegeben werden kann. Die einzelnen Elemente werden Zellen
genannt, die zwei Zustände haben, „bewohnt“ (schwarz dargestellt)
oder „unbewohnt“ (weiß dargestellt). Mit jedem Simulationsschritt wird
der Zustand jeder Zelle nach folgenden Regeln verändert: Jede
bewohnte Zelle mit genau zwei oder genau drei bewohnten Nachbarn
bleibt bewohnt (blauer Fall), sonst wird sie unbewohnt (grüner Fall).
Jede unbewohnte Zelle mit genau drei bewohnten Nachbarn wird
bewohnt (roter Fall), bleibt sonst unbewohnt (oranger Fall). Jede Zelle
hat damit minimal drei (in der Ecke) und maximal acht Nachbarn (in der
Mitte).
Probieren Sie zunächst auf Papier einige Beispiele aus, wie sich die
Zellen verändern können. Gibt es z. B. Strukturen, die, solange sich ihr
Umfeld nicht ändert, immer bewohnt bleiben?

a) Nutzen Sie als Datenstruktur ein zweidimensionales Array.
Schreiben Sie einen Nutzungsdialog, mit dem n und dann eine
Zahl w für eine prozentuale Wahrscheinlichkeit zwischen 0 und
100 eingegeben wird.

b) Füllen Sie dann das Array zufällig mit bewohnten Zellen, dabei
soll die Anzahl der bewohnten Zellen vom Wert w abhängen.

c) Schreiben Sie eine Möglichkeit, das Array mit Hilfe eines
Interaktionsbrett-Objekts zu visualisieren. In den Abbildungen
sind bewohnte Zellen schwarz.

d) Implementieren Sie das beschriebene Verfahren, mit dem die
bewohnten Zellen nach einem Schritt berechnet werden.
Ergänzen Sie den Nutzungsdialog so, dass der Nutzer eine
Schrittzahl angeben kann, dann diese Anzahl von Schritten
ausgeführt und das Ergebnis angezeigt wird (ein
Interaktionsbrett kann mit der Methode abwischen() gelöscht
werden). Überlegen Sie sich eine sinnvolle Abbruchmöglichkeit,
die Bilder am Rand zeigen einen typischen Ablauf, Eingaben
sind umrandet.

Feldgroesse n (>0): 10

Wahrscheinlichkeit w (0-100): 30

Anzahl Schritte (>0): 1

Anzahl Schritte (>0): 1

Anzahl Schritte (>0): 1

Anzahl Schritte (>0): 50

Anzahl Schritte (>0): Ende

https://youtu.be/UgTIQ2V5NJs
https://kleuker.iui.hs-osnabrueck.de/querschnittlich/prog1/gameOfLive.html
https://kleuker.iui.hs-osnabrueck.de/querschnittlich/prog1/gameOfLive.html

Seite 2 von 3

Programmierung 1

Wintersemester 2025/26
Aufgabenblatt 12

e) (freiwillig) Stellen Sie Ihr Programm so um, dass durch Anklicken der Felder den
Zustand der Zellen verändert werden kann. Es könnte weiterhin einen Knopf geben,
mit dem ein Schritt durchgeführt wird (nicht in Beispiellösung). Hier ist es sinnvoll, das
Gitter mit echten Objekten nachzubilden, die die einzelnen Zellen verwalten.

Hinweis: Überlegen Sie sich als Ansatz, warum es sinnvoll sein kann mit zwei
zweidimensionalen Arrays zu arbeiten.

40. Aufgabe (Exceptions analysieren, VL 23)

public class Analyse {
 public int check(int x)
 throws MeineException {
 EinUndAusgabe io
 = new EinUndAusgabe();
 try {
 io.ausgeben("A");
 if (x < 20) {
 throw new MeineException(x);
 }
 io.ausgeben("B");
 if (x < 62) {
 io.ausgeben("C");
 return x;
 } else {
 io.ausgeben("D");
 throw new MeineException(x-10);
 }
 } catch (MeineException e) {
 try {
 io.ausgeben("E");
 if (e.getStufe() > 72) {
 throw new MeineException(10);
 }
 io.ausgeben("F");
 if (e.getStufe() < 62) {
 io.ausgeben("G");
 } else {
 io.ausgeben("H");
 throw new MeineException(x);
 }
 } finally {
 io.ausgeben("Y");
 }
 } finally {
 io.ausgeben("Z");
 }
 io.ausgeben("I");
 return -42;
 }
}

public class MeineException extends
Exception {

 private int stufe;

 public MeineException(int wert) {
 super();
 this.stufe = wert;
 }

 public int getStufe() {
 return this.stufe;
 }
}

public class Main {

 public static void main(
 String[] args) {
 EinUndAusgabe io
 = new EinUndAusgabe();
 int[] test = {15, 35, 65, 75, 85};
 Analyse a = new Analyse();
 for(int t: test) {
 io.ausgeben(t +": ");
 try {
 io.ausgeben(a.check(t) + "\n");
 } catch (Exception e) {
 io.ausgeben("Schicht\n");
 }
 }
 }
}

Geben Sie die Ausgaben des obigen Programms an.

https://youtu.be/UgTIQ2V5NJs

Seite 3 von 3

Programmierung 1

Wintersemester 2025/26
Aufgabenblatt 12

41. Aufgabe (Stapel-Variante, Umgang mit Exceptions, Testen, VL 24)

Ein Stapel (Stack) ist eine Datenstruktur, die Objekte eines bestimmten Typs aufnehmen
kann. Dabei werden Objekte mit einer Methode push(.) so auf den Stapel gelegt, dass das
neue Element immer oben liegt. Mit der Methode pop(.) wird das oberste Element
zurückgegeben und vom Stapel gelöscht. Weiterhin ist es sinnvoll, wenn es Methoden
istLeer() bzw. istVoll() gibt, mit denen man prüfen kann, ob ein Stapel voll oder leer ist.
a) Realisieren Sie eine Klasse EndlicherStapel für Integer-Objekte, mit einem

Konstruktor, der die mögliche Größe des Stapels als Parameter hat. Nutzen Sie zur
Realisierung des Stapels einen Array.

b) Realisieren Sie eine Methode push(Integer), mit der ein Integer-Objekt auf den Stapel
gelegt wird. Wird versucht, eine null-Referenz auf den Stapel zu legen, soll eine
NullPointerException geworfen werden. Wird versucht ein Objekt auf einen vollen
Stapel zu legen, soll eine von Ihren neu zu erstellende StapelVollException geworfen
werden.

c) Realisieren Sie die Methode pop(), die das zuletzt auf den Stapel gelegte Integer-
Objekt zurück gibt und vom Stapel löscht. Wird versucht, ein Objekt von einem leeren
Stapel zu nehmen, soll eine von Ihren neu zu erstellende StapelLeerException
geworfen werden.

d) Realisieren Sie die Methoden istVoll() und istLeer() zur Überprüfung des
Stapelzustands.

e) Schreiben Sie zu allen realisierten Methoden JUnit-Tests, die alle möglichen
Ergebnisse testen. Nutzen Sie dazu eine Test Fixture, also mehrere Objekte, mit einem
leeren, einem vollen und einem „normal“ gefüllten Stack, auf denen Sie jeweils alle Ihre
Methoden ausprobieren.

f) Kopieren Sie Ihr bisheriges Projekt in ein neues Projekt und ändern Sie Ihre
Implementierung so ab, dass alle Tests aus e) erfüllt werden, sich aber trotzdem ein
Fehler im Programm befindet. Ergänzen Sie dann einen Test, der den eingebauten
Fehler findet.

Hinweis: Die Methoden push(.) und pop() sollen die Exceptions nur werfen, nicht selber
bearbeiten. In den Tests ist mit try-catch-Blöcken zu prüfen, ob die richtigen Exceptions
geworfen werden und die Methoden sonst die korrekten Ergebnisse liefern.

s= new
EndlicherStapel(2)

s.push(42)

42

s.push(99)

42

99

s.pop() ergibt
99

42

s.pop() ergibt
42

s.pop()s.push(43)

42

99

gibt
StapelVollException

s.push(null)

42

gibt
NullPointerException

gibt
StapelLeerException

https://youtu.be/UgTIQ2V5NJs

