/fs?%".\ Prof. Dr. Stephan Kleuker
@ Epr—

ooy Hochschule Osnabriick

Programmierung 1

\ ( )s Fakultat Ing-Wiss. und Informatik Wintersemester 2025/26
¥’ - Software-Entwicklung - Aufgabenblatt 12

Nur zum Selbststudium!

0.12 Aufgabe
Geben Sie die Loésungsworte der Quizze aus der Lernnotiz an.

39. Aufgabe (10 Punkte, Nutzung mehrdimensionaler Arrays, VL 22)

Zur Veranschaulichung des Ergebnisses ist https://kleuker.iui.hs-
osnabrueck.de/querschnittlich/progl/gameOfLive.html nutzbar. Da das
Programm nicht in Java geschrieben ist, sieht das Interaktionsbrett
etwas anders aus. Sie kdnnen auch ein Feld mit der Wahrscheinlichkeit
0 erstellen, mit der Maus Zellen markieren und sehen was nach einem
Schritt passiert.

Schreiben Sie eine Simulation von Conways ,Game of Life“. Die
Simulation lauft auf einem Gitter der Grol3e n*n, wobei n vom Nutzer
eingegeben werden kann. Die einzelnen Elemente werden Zellen
genannt, die zwei Zustande haben, ,bewohnt* (schwarz dargestellt)
oder ,unbewohnt* (weil} dargestellt). Mit jedem Simulationsschritt wird
der Zustand jeder Zelle nach folgenden Regeln verédndert: Jede
bewohnte Zelle mit genau zwei oder genau drei bewohnten Nachbarn
bleibt bewohnt (blauer Fall), sonst wird sie unbewohnt (griiner Fall).
Jede unbewohnte Zelle mit genau drei bewohnten Nachbarn wird
bewohnt (roter Fall), bleibt sonst unbewohnt (oranger Fall). Jede Zelle
hat damit minimal drei (in der Ecke) und maximal acht Nachbarn (in der
Mitte).

Probieren Sie zunachst auf Papier einige Beispiele aus, wie sich die
Zellen veréandern kénnen. Gibt es z. B. Strukturen, die, solange sich ihr
Umfeld nicht andert, immer bewohnt bleiben?

a) Nutzen Sie als Datenstruktur ein zweidimensionales Array.
Schreiben Sie einen Nutzungsdialog, mit dem n und dann eine
Zahl w fir eine prozentuale Wahrscheinlichkeit zwischen 0 und
100 eingegeben wird.

b) Fuillen Sie dann das Array zufallig mit bewohnten Zellen, dabei
soll die Anzahl der bewohnten Zellen vom Wert w abhéangen.

c) Schreiben Sie eine Mdglichkeit, das Array mit Hilfe eines
Interaktionsbrett-Objekts zu visualisieren. In den Abbildungen
sind bewohnte Zellen schwarz.

d) Implementieren Sie das beschriebene Verfahren, mit dem die
bewohnten Zellen nach einem Schritt berechnet werden.
Erganzen Sie den Nutzungsdialog so, dass der Nutzer eine
Schrittzahl angeben kann, dann diese Anzahl von Schritten
ausgefuhrt und das Ergebnis angezeigt wird (ein
Interaktionsbrett kann mit der Methode abwischen() geléscht
werden). Uberlegen Sie sich eine sinnvolle Abbruchmaglichkeit,
die Bilder am Rand zeigen einen typischen Ablauf, Eingaben
sind umrandet.

Feldgroesse n (>0):

Wahrscheinlichkeit w (0-100):

Anzahl Schritte (»0): 1
Anzahl Schritte (»0): 1
Anzahl Schritte (»0): 1
Anzahl Schritte (>0): |50
Anzahl Schritte (>0): [Ende

| £ Interaktionsbrett

|£:| Interaktionsbrett

| £/ Interaktionsbrett

=3

| £ Interaktionsbrett

5.

Seite 1 von 3



https://youtu.be/UgTIQ2V5NJs
https://kleuker.iui.hs-osnabrueck.de/querschnittlich/prog1/gameOfLive.html
https://kleuker.iui.hs-osnabrueck.de/querschnittlich/prog1/gameOfLive.html

Prof. Dr. Stephan K|tauker Programmierung 1
Hochschule Osnabriick _
Fakultat Ing-Wiss. und Informatik Wintersemester 2025/26

b)) - Software-Entwicklung - Autgabenblatt 12

e) (freiwillig) Stellen Sie Ihr Programm so um, dass durch Anklicken der Felder den
Zustand der Zellen verandert werden kann. Es kdnnte weiterhin einen Knopf geben,
mit dem ein Schritt durchgefiihrt wird (nicht in Beispielldsung). Hier ist es sinnvoll, das
Gitter mit echten Objekten nachzubilden, die die einzelnen Zellen verwalten.

Hinweis: Uberlegen Sie sich als Ansatz, warum es sinnvoll sein kann mit zwei

zweidimensionalen Arrays zu arbeiten.

40. Aufgabe (Exceptions analysieren, VL 23)
public class Analyse {

public int check(int x)
throws MeineException {

EinUndAusgabe io

= new EinUndAusgabe(); public class MeineException extends
try { Exception {
io.ausgeben("A");
if (x < 20) { private int stufe;
throw new MeineException(x);
¥ public MeineException(int wert) {
io.ausgeben("B"); super();
if (x < 62) { this.stufe = wert;
io.ausgeben("C"); }
return x;
} else { public int getStufe() {
io.ausgeben("D"); return this.stufe;
throw new MeineException(x-10); }
} }
} catch (MeineException e) {
try {
io.ausgeben("E"); public class Main {
if (e.getStufe() > 72) {
throw new MeineException(10); public static void main(
} . String[] args) {
io.ausgeben("F"); EinUndAusgabe io
if (e.getStufe() < 62) { = new EinUndAusgabe();
io.ausgeben("G"); int[] test = {15, 35, 65, 75, 85};
} else { . Analyse a = new Analyse();
io.ausgeben("H"); for(int t: test) {
throw new MeineException(x); io.ausgeben(t +": ");
}. try {
} finally { io.ausgeben(a.check(t) + "\n");
io.ausgeben("Y"); } catch (Exception e) {
¥ io.ausgeben("Schicht\n");
} finally { }
io.ausgeben("Z2"); }
} }
io.ausgeben("1I"); }
return -42;

}

Geben Sie die Ausgaben des obigen Programms an.

}

Seite 2 von 3


https://youtu.be/UgTIQ2V5NJs

Prof. Dr. Stephan Kleuker
Hochschule Osnabriick _
Qe | ) Fakultat Ing-Wiss. und Informatik Wintersemester 2025/26

| - Software-Entwicklung - Aufgabenblatt 12

Programmierung 1

41. Aufgabe (Stapel-Variante, Umgang mit Exceptions, Testen, VL 24)

99 99
42 42 42 42 42
I I I I I
s= new s.push(42) s.push(null) s.push(99) s.push(43) s.pop() ergibt s.pop() ergibt s.pop()

EndlicherStapel(2) 99 42
gibt gibt gibt
NullPointerException StapelVollException StapelLeerException

Ein Stapel (Stack) ist eine Datenstruktur, die Objekte eines bestimmten Typs aufnehmen
kann. Dabei werden Objekte mit einer Methode push(.) so auf den Stapel gelegt, dass das
neue Element immer oben liegt. Mit der Methode pop(.) wird das oberste Element
zuriickgegeben und vom Stapel geldscht. Weiterhin ist es sinnvoll, wenn es Methoden
istLeer() bzw. istVoll() gibt, mit denen man prifen kann, ob ein Stapel voll oder leer ist.

a) Realisieren Sie eine Klasse EndlicherStapel fur Integer-Objekte, mit einem
Konstruktor, der die mogliche Grol3e des Stapels als Parameter hat. Nutzen Sie zur
Realisierung des Stapels einen Array.

b) Realisieren Sie eine Methode push(Integer), mit der ein Integer-Objekt auf den Stapel
gelegt wird. Wird versucht, eine null-Referenz auf den Stapel zu legen, soll eine
NullPointerException geworfen werden. Wird versucht ein Objekt auf einen vollen
Stapel zu legen, soll eine von Ihren neu zu erstellende StapelVollException geworfen
werden.

c) Realisieren Sie die Methode pop(), die das zuletzt auf den Stapel gelegte Integer-
Objekt zurtick gibt und vom Stapel l6scht. Wird versucht, ein Objekt von einem leeren
Stapel zu nehmen, soll eine von lhren neu zu erstellende StapellLeerException
geworfen werden.

d) Realisieren Sie die Methoden istVoll() und istLeer() zur Uberprifung des
Stapelzustands.

e) Schreiben Sie zu allen realisierten Methoden JUnit-Tests, die alle mdglichen
Ergebnisse testen. Nutzen Sie dazu eine Test Fixture, also mehrere Objekte, mit einem
leeren, einem vollen und einem ,normal* gefullten Stack, auf denen Sie jeweils alle lhre
Methoden ausprobieren.

f) Kopieren Sie Ihr bisheriges Projekt in ein neues Projekt und andern Sie lhre
Implementierung so ab, dass alle Tests aus e) erfillt werden, sich aber trotzdem ein
Fehler im Programm befindet. Ergdnzen Sie dann einen Test, der den eingebauten
Fehler findet.

Hinweis: Die Methoden push(.) und pop() sollen die Exceptions nur werfen, nicht selber

bearbeiten. In den Tests ist mit try-catch-Blécken zu priifen, ob die richtigen Exceptions

geworfen werden und die Methoden sonst die korrekten Ergebnisse liefern.

Seite 3von 3


https://youtu.be/UgTIQ2V5NJs

