Programmierung 1 Tl, 8.12.2025
Fragen, Antworten, Kommentare zur aktuellen Vorlesung

Die Online-Befragung zur genutzten alternativen Veranstaltungsform und zur Lehrevaluation
ist online. Bitte ausfillen: https://forms.gle/fZTBWPmUhK4oqLHwW5. Sie werden eventuell
aufgefordert sich bei Google anzumelden, das ist nur notwendig, wenn Sie in der Bearbeitung
eine Pause machen und das Teilergebnis zwischenspeichern wollen. Die Befragung endet am
19.12., die Ergebnisse stehen in einem nachfolgenden Fragen&Antworten-Dokument auf der
Webseite der Veranstaltung.

Das letzte Aufgabenblatt 11, das abgenommen wird, ist online. Wenn das Blatt abgenommen wurde,
besteht keine Verpflichtung mehr zur Praktikumsteilnahme. Die Praktikumsleiter sind natdrlich
trotzdem erreichbar.

Frage: Kdnnen oder sollen wir nicht Eclipse, Git und CodeTogether nutzen?

Dies sind sehr wichtige Werkzeuge im Laufe des Studiums, aber aus meiner Sicht friihestens ab dem
zweiten Semester. Generell haben meine Erfahrungen in ersten Semestern gezeigt, dass jedwedes
nitzliche, aber kompliziertere, Werkzeug dazu fiihrt, dass unsichere Studierende noch unsicherer
werden, da sie zusatzlich das neue Tool verstehen mussen und so oft nicht zum Mehrwert kommen.
Jede kleine zusatzliche Stufe flihrt zum Verlust von Personen am Anfang des Studiums.

Eclipse schauen wir kurz am Ende der Vorlesung an. Bluel ist das einzige Werkzeug mit dem ein
einfacher sauberer Einstieg in die Objektorientierung funktioniert, was bei Studierenden zu besseren
Lernerfolgen fiihrt (Erfahrungen der Entwickelnden von Bluel und auch meine Erfahrung). Intelli)
sieht besser aus, kann im Wesentlichen nicht mehr als Eclipse und erfillt die
Installationsanforderungen fiir die identische Form fiir die Hochschule und KleukersSEU nicht.

Git ermoglicht es systematisch verschiedene Versionen der gleichen Software zu verwalten und
zuganglich zu machen. Das unterstiitzt einzelne Personen und Gruppenarbeiten mit gemeinsamem
Git-Zugang. Git steht auf meiner Empfehlungsliste zum Selbststudium zwischen erstem und zweitem
Semester.

CodeTogether ermdglicht, dass mehrere Personen gemeinsam in einem Editor Programmcode lesen
und parallel bearbeiten kénnen (live sharing). Das ist sehr cool und kann bei einer organisierten
Zusammenarbeit sehr interessant sein. CodeTogether arbeitet dabei z. B. iber Werkzeuggrenzen
hinaus und eine Teilnahme im Browser kann sogar moglich sein. Ein Einfiihrungstext steht in
https://dzone.com/articles/remote-pair-programming-with-intellij-eclipse-and. Wieder ein tolles
Programm, wenn alle Personen ein gewisses Programmier-Niveau erreicht haben. In den ersten

beiden Semestern steht bewusst aber der Kampf ,ein Mensch und eine Programmieraufgabe” im
Mittelpunkt und soll durch Gruppenarbeiten nur sinnvoll flankiert werden. Es ist auch méglich das
Eclipse in der KleukerSEU um weitere Plugins zu erweitern.

Erinnerung: Tests helfen bei Entwicklung und ihre Nutzung ist in groReren Projekten ein Standard. Ob
Tests vor oder nach der Entwicklung geschrieben werden, hangt wieder von Rahmenbedingungen ab.
Generell muss man sich dazu merken, dass Tests notwendig (man muss sie machen) aber nicht
hinreichend fiir eine gute Software-Qualitat sind. Dies bedeutet, dass es trotz vollstandig erfiillter
Tests immer noch massive Fehler in den Programmen geben kann, siehe auch [Kle19], Gber die

https://forms.gle/fZTBWPmUhK4oqLHw5
https://dzone.com/articles/remote-pair-programming-with-intellij-eclipse-and

Bibliothek kostenlos herunterladbar. Dies bedeutet fiir Ihre Praktika, dass Ihre Programme trotz einer
recht hohen Testanzahl noch falsch sein kénnen und Sie Ihre Algorithmen weiterhin im Kopf
Uberprifen missen. Wenn sowas nebenbei passiert, also falsche Programme mit laufenden Tests,
schicken Sie mir solche Programme gerne zu, da ich dann zumindest die Testanzahl erh6hen kann
(was nie hinreichend sein wird).

Ein sehr interessantes Beispiel ist diese vermeintliche Losung zur Aufgabe 28 g)

public int anzahlZwischen3(int min, int max) {
if (this.messwerte == null || this.messwerte.isEmpty()) {
return 9;
}
int ergebnis = ©;
for (int i : this.messwerte) {
if (this.messwerte.get(i-1) <= max && this.messwerte.get(i-1) >= min){
ergebnis = ergebnis + 1;
}
}

return ergebnis;

}
<K& Blue): Testergebnisse — O et

i MessreihefnzahlZwischen3Test test(1

i MessreiheAnzahlZwischen3Test.test02
i MessreiheAnzahlZwischen3Test.test03
i’ MessreiheAnzahlZwischen3Test.test04
i MessreiheAnzahlZwischen3Test.test05

Tests: 5/5 XFehler:0 XNicht bestanden:0 Gesamtzeit: 10ms

Es sollte klar sein, dass hier die ForEach-Schleife nicht richtig verstanden und i nicht als Element,
sondern als Index angesehen wurde. Da es mit get(i) eine Exception gibt, wurde mit i-1
experimentiert und siehe da, es klappt auch bei den korrigierten (siehe oben) Tests.

Den Fehler erkennt man mit Programmiererfahrung sehr schnell, aber Sie kommen immer wieder in
Situationen, in denen Sie Anfanger auf einem Gebiet sind, so dass ein vergleichbarer Fehler dann
auch moglich ist. Deshalb bendtigt man z. B. beim Selbststudium immer einen erfahreneren Coach,
der zumindest am Ende sich Ergebnisse anschaut.

[Kle19] S. Kleuker, Qualitatssicherung durch Softwaretests, 2. aktualisierte und erweiterte Auflage,
Springer Vieweg, Wiesbaden, 2019

