Programmierung 1 Tl, 10.12.2025
Fragen, Antworten, Kommentare zur aktuellen Vorlesung

Die Online-Befragung zur genutzten alternativen Veranstaltungsform und zur Lehrevaluation
ist online. Bitte ausfillen: https://forms.gle/fZTBWPmUhK4oqLHwW5. Sie werden eventuell
aufgefordert sich bei Google anzumelden, das ist nur notwendig, wenn Sie in der Bearbeitung
eine Pause machen und das Teilergebnis zwischenspeichern wollen. Die Befragung endet am
19.12., die Ergebnisse stehen in einem nachfolgenden Fragen&Antworten-Dokument auf der
Webseite der Veranstaltung.

Hinweis: Unter https://youtu.be/WNw3JbP2RCg finden Sie die Erklarungen von Beispiellésungen zu
zwei Teilaufgaben der Messreihe Teil 2 online. Weiterhin gibt es ebenfalls ein Videos zur Aufgabe mit
dem interaktiven Interaktionsbrett unter https://youtu.be/wVNGKb6U ME und zum Basketballspiel
in https://youtu.be/YhvkBYtCyZ4.

Hinweise:

e Die Unterlagen der letzten Veranstaltungen sind als vorzeitiges Weihnachtsgeschenk online
(natirlich ohne die zeitnahen Fragen&Antworten-Dokumente).

e Eine Beispielklausur mit Online-Losungsvideoversuch mit Korrektur ist schon etwas langer
online. Die Klausurstruktur wird tGbernommen, die letzte Aufgabe kann beliebig ersetzt
werden.

e Alle Inhalte der Vorlesung kénnen in der Klausur vorkommen (als letzte Aufgabe).

e Das letzte Aufgabenblatt, das abgenommen wird ist Blatt 11, Fragen zu anderen Blattern
kénnen natiirlich gestellt werden.

Frage: Ich habe beim googeln liber Interfaces gesehen, das da auch eine Programmierung drin
stattfinden kann. Das finde ich nicht in den Vorlesungsfolien.

Antwort: Das stimmt, dies ist nicht Teil der Veranstaltung, da die ergoogelte Idee nicht fiir die
klassische Objektorientierung steht und Java-spezifisch ist. Zentrale Bedeutung hat das vorgestellte
Interface-Konzept als vollstandig abstrakte Klasse, die so als Vorgabe zur Realisierung dient und
flexibel gegen andere Programmierungen ausgetauscht werden kann.

Das Schliisselwort Interface gibt es nebenbei in C++ selbst nicht, aber die Idee als vollstdndig
abstrakte Klasse findet sich dort genauso wieder und hat die gleiche elementare Bedeutung wie in
anderen objektorientierten Sprachen.

In Java wurde das Interface-Konzept aufgeweicht, da fiir neue Java-Versionen der Wunsch entstand
neue Methoden in Interfaces zu packen. Wird dies durch eine einfache Ergdnzung gemacht, missten
in allen Klassen, die das Interface realisieren, diese Methode neu implementiert werden. Damit ware
eine neue Java-Version inkompatibel mit der vorherigen, was immer eine schlechte Idee ist (fragen
sie PHP oder Python). Der leicht schmuddelige Trick ist, einfach zur neuen Methode doch eine
konkrete Implementierung anzugeben, die mit dem Schliisselwort default gekennzeichnet wird.
Diese Methode kann dann in der realisierenden Klasse implementiert also tiberschrieben werden,
muss es aber nicht. Das folgende Beispiel zeigt dies und noch eine Erganzung.

https://forms.gle/fZTBWPmUhK4oqLHw5
https://youtu.be/WNw3JbP2RCg
https://youtu.be/wVNGKb6U_ME
https://youtu.be/YhvkBYtCyZ4

public interface MeinInterface {
public void zeich42(); // abstrakt, muss realisiert werden

default public void zeich43() { // mit Standard-Implementierung
System.out.println("XLIII");

}

default public void zeich44() {
System.out.println("XLIV");

}

public static void klassenmethode() {
System.out.println("geht in Java-Interface,
+ "hat aber mit Vererbung nix zu tun.");

}
}

public class MeineRealisierung implements MeinInterface{

public MeineRealisierung(){

}

@Override
public void zeich42(){
System.out.println("42");

}

@Override
public void zeich44(){
System.out.println("44");

}

public static void klassenmethode() {
System.out.println("geht in Java-Interface,
+ "hat aber mit Vererbung nix zu tun.");

public class Main {
public static void main(String[] s) {

MeinInterface mi = new MeineRealisierung();
mi.zeich42();
mi.zeich43();
mi.zeich44();
MeineRealisierung.klassenmethode(); //unsauber
MeinInterface.klassenmethode(); // besser

Die Ausgabe lautet:

42

XLIII

44

geht in Java-Interface, hat aber mit Vererbung nix zu tun.
geht in Java-Interface, hat aber mit Vererbung nix zu tun.

Weiterfiihrend flr Fortgeschrittenere: Die Erstellung von Tests ist eine zentrale Aufgabe wahrend
der Programmentwicklung. Tests kdnnen auch vor der Entwicklung geschrieben werden, dadurch
besteht die Moéglichkeit das zu programmierende Verhalten genau zu beschreiben. Wie immer bei
Testfdllen werden typische Falle und jedwedes mogliche Randverhalten in Tests umgesetzt. Danach
wird inkrementell die Software entwickelt und es sollten Schritt fir Schritt mehr Tests griin werden.
Da einige Tests laufen werden, auch wenn das zu entwickelnde Programm nichts macht, wird die
Zahl der laufenden Tests nicht unbedingt kontinuierlich anwachsen. Das folgende Beispiel gibt einen
kleinen unvollstandigen Ausblick, was noch mit JUnit moglich ist. Beachten Sie, dass es uniiblich ist
Ausgaben in Tests zu programmieren, dies erfolgt hier zur Anschauung. Die zu testende Klasse hat
eine Methode, die Zahlen addiert.

public class Adder {
public int sum(int x, int y, int z) {
return x + y + z;
}
}

Die Beispieltestklasse sieht wie folgt aus.

import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Assumptions;

import java.util.List;
import java.util.stream.Stream;

import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.CsvFileSource;
import org.junit.jupiter.params.provider.MethodSource;

public class AdderTest {

private Adder sut; // System under Test
private Adder sut2; // kann beliebig viele Testobjekte geben

@BeforeAll
public static void setUpBeforeClass() {
//Dies wird einmal am Start fuer alle Tests gemacht

}

@AfterAll
public static void tearDownAfterClass() {
//Dies wird einmal am Ende fuer alle Tests gemacht

}

@BeforeEach

public void setUp() {
//Dies wird einmal vor jedem Test gemacht
this.sut = new Adder();
this.sut2 = new Adder();

}

@AfterEach
public void tearDown() {
//Dies wird einmal mach jedem Test gemacht

}

@Test
void testSumErwartet() {
System.out.println("test1");
int erg = this.sut.sum(21, 21, 0);
Assertions.assertEquals(42, erg
, "Erwartet wurde 42, gefunden:

+ erg);

}

@Test
void testSumVertauschbar() {
System.out.println("test2");
Assertions.assertEquals(this.sut.sum(1, 2, -1)
, this.sut2.sum(-1, 1, 2));

}

@Test

void testSumMitAnnahme() {
System.out.println("test3");
// Test nur ausfuehren, wenn Annahme erfuellt
Assumptions.assumeTrue(l + 2 + 3 == 6);
int erg = this.sut.sum(1, 2, 3);
Assertions.assertEquals(6, erg

, "Erwartet wurde 42, gefunden:

+ erg);

}

// Stellen Sie sich Stream einfach als List vor; der
// ebenfalls mit einem Iterator alle Elemente durchlaufen kann.
public static Stream<Arguments> daten(){
List<Arguments> testdaten = List.of(
Arguments.of(e, 0, 0, 0),
Arguments.of(-2, -1, -3, -6),
Arguments.of(6, 7, 29, 42)
)
return testdaten.stream();

}

@ParameterizedTest

@MethodSource({"daten"})
public void testSumParametrisiert(int a, int b, int c, int erg) {

System.out.println("Testpar mit " + a + "," + b + "," + ¢);
Assertions.assertEquals(erg, this.sut.sum(a, b, c));

}

@ParameterizedTest

@CsvFileSource(resources ={"/Mappel.csv"}, numLinesToSkip = 1)
public void testSumMitExcelSheet(int a, int b, int c, int erg) {

System.out.println("Testcsv mit " + a + "," + b + "," + ¢);
Assertions.assertEquals(erg, this.sut.sum(a, b, c));

w Mappel.c. Anrmelden

Start | Einfc | Zeicl | Seite | Forrr | Date | Uber | Ansii | Hilfe Q Sie wiinst
Al N 1= b w

A | B | T | D | E E
1 |x ¥ z ergebnis
2 | 3 4 3 12
3 | 1 1 1 3
4 | -98 112 -14 0
5 —
6 —
? — -

Mappel ® 1 ’

CEEL £53 mo- 0 + 100%

Die resultierende Ausgabe sieht wie folgt aus.

<& Blue: Konsole - BeispiellUnitMoeglichkeiten
Optionen

|Testpar mit 6,0,0

Testpar mit -2,-1,-3

|Testpar mit 6,7,29

test2

[Testcsv mit 3,4,5

Testcsv mit 1,1,1

|Testcsv mit -98,112,-14

| testl

ltest3

4R Blue): Testergebnisse - O x

i AdderTest.testSumParametrisiert()
1 AdderTest.testSumParametrisiert()
v AdderTest.testSumParametrisiert()
W AdderTest.testSumVertauschbar()

' AdderTest.testSumMitExcelSheet()
W AdderTest testSumMitExcelSheet()
1 AdderTest.testSumMitExcelSheet()
v AdderTest.testSumErwartet()

i AdderTest testSumMitdAnnahme()

Tests: 9 XFehler XNicht bestanden:0 Gesamtzeit 33ms

