Programmierung 1 Tl, 15.12.2025
Fragen, Antworten, Kommentare zur aktuellen Vorlesung

Die Online-Befragung zur genutzten alternativen Veranstaltungsform und zur Lehrevaluation
ist online. Bitte ausfillen: https://forms.gle/fZTBWPmUhK4oqLHwW5. Sie werden eventuell
aufgefordert sich bei Google anzumelden, das ist nur notwendig, wenn Sie in der Bearbeitung
eine Pause machen und das Teilergebnis zwischenspeichern wollen. Die Befragung endet am
19.12., die Ergebnisse stehen in einem nachfolgenden Fragen&Antworten-Dokument auf der
Webseite der Veranstaltung.

Frage: Sollten die Tests zum Stapel eigentlich alle in einer Klasse stehen?

Antwort: Generell werden die Tests einer Klasse immer in einer Testklasse zusammengefasst.
Allerdings gibt es keine Regel, dass es so sein muss. Eine Aufteilung ist insbesondere dann sinnvoll,
wenn es sich um komplexe zu testende Methoden handelt oder um Methoden, die haufiger in einem
Projekt angepasst werden missen. Dies ist wieder einer der Fragen mir der Antwort, es hangt vom
Projektkontext ab. Fiir das erste Semester gibt es keine Vorgaben. Keine Vorgabe, aber ein Wunsch
ist es, dass Testmethoden sprechende Namen enthalten, also im Methodennamen steht was mit
wem gemacht wird und welches Ergebnis erwartet wird, z. B. ,testPushAufLeerenStapelErlaubt”. (Ich
habe dies bei den Messreihentests leider nicht eingehalten.)

Hinweis: Bei Programmen im Praktikum ist mir aufgefallen, dass relativ selten ,, this.“ genutzt wird.
Da wir jetzt alle Schreibweisen kennen, zeigt das folgende Beispiel, wie hilfreich solche
Bezeichnungen vor Variablen und Methoden sind. Da dies in der Praxis in ordentlichen Unternehmen
immer gefordert wird, sollte dieser Stil friihzeitig genutzt werden. Der Hintergrund ist, dass immer
alle entwickelnden Personen eines Teams den Code anderer lesen und bearbeiten kénnen sollen.
Andere Programmiersprachen haben vergleichbare Regeln.

public void sprechenderMethodenname(String produktname, int id) {
this.name = produktname; // klar erkennbar, auf der linken Seite ist
// eine Objektvariable
super.id = id; // klar erkennbar, auf der linken Seite ist
// eine Objektvariable die (irgendwoher)
// geerbt wurde

Status.count++; // klar erkennbar, dass eine Klassenvariable
// genutzt wird
this.weiterleiten(id); // klar erkennbar, es wird erwartet, dass sich

// die Objektmethode in dieser Klasse befindet
super.markieren(this.name); // klar erkennbar, dass eine Objektmethode
// (irgendeiner) beerbten Klasse aufgerufen
// werden soll
Status.sichern(this.name); // klar erkennbar, dass eine Klassenmethode
// aufgerufen wird



https://forms.gle/fZTBWPmUhK4oqLHw5

Kurz ergdnzend zum Thema dynamische Polymorphie, dem zentralen Thema der Objektorientierung,
was genauer auch in ,,nur” objektbasierten Sprachen wie Go die zentrale Rolle spielt. Durch
dynamische Polymorphie kénnen Systeme flexibel gestaltet und einfach zur Laufzeit verandert
werden, da jeweils auf die passenden Methoden zugegriffen wird. Da es bei der Praktikumsaufgabe
33 damit vereinzelt Probleme gab, hier nochmals eine andere Beispielskizze. Die Abbildung rechts
zeigt eine Vererbungshierarchie, also X3 erbt von X2, weiterhin sind nur die Methodennamen von
Methoden angegeben, die in diesen Klassen ausprogrammiert sind. Da alle Klassen von der Klasse
Object erben, wurde sie nach oben gesetzt. Generell kann man Variablen eines Typen Objekte
dieses Typen oder einer erbenden Klasse zuweisen, also

X1 x1 = new X1(); public class Object {
X1 x2 = new X2(); // in Java gegeben
X1 x3 = new X3();

ist alles erlaubt, hingegen

public class X1 {

X3 x31 = new X1(); public void mi() {} //1
nicht. Der angegebene Typ auf der linken Seite ist relevant, public void mx() { // 6
wenn es darum geht, welche Methoden aufgerufen werden this.ml();

kénnen. Fur x2 ist z. B. der Aufruf x2.m2() so nicht moglich. ) }

Die dynamische Polymorphie kommt ins Spiel, wenn fiir ein

Objekt bestimmt werden soll, welche Methode auszufiihren ist.

Hierbei wird geschaut, welcher Typ, also welche Klasse zur public void m2() {}

public class X2 extends X1 {

Erzeugung des Objekts genutzt wurde. Wird x1.m1() public void m3() { //3

ausgefuhrt, wird der mit //1 markierte Code genutzt, bei this.m4();

x3.m1() der mit //2 markierte Code. Sollte dann eine }

Methode nicht in der erzeugenden Klasse enthalten sein, wird public void ma() { //5

in der Klasse gesucht, von der die erzeugende Klasse geerbt hat. super.mx();

Wird also x3.m3 () aufgerufen, wird der mit //3 markierte }

Code in der Klasse X2 ausgefiihrt. Dies ist auch der Grund }

warum es fiir jedes Objekt einer neuen Klasse gilt, dass immer

die toString()-Methode ausgefiihrt werden kann, da sie in public class X3 extends X2 {

der Klasse Objekt definiert wird. public void mi() {} //2
public void ma() { //4

Wichtig ist, dass dieser Ansatz in der zu Erzeugung genutzten super.m4();

Klasse zuerst nach der Methode zu suchen bei jedem neuen }

einfachen Methodenaufruf angewandt wird. Beim Aufruf von public void m3() {}

x3.m3() wird die Methode m3 () in X2 genutzt, beim }

folgenden Aufruf von this.m4 () wird wieder in X3 nach der
Methode gesucht und an der mit / /4 markierten Stelle gefunden.

Vom erwahnten einfachen Methodenaufruf wird nur abgewichen, wenn vor dem Aufruf super
steht. Damit wird in der Programmierung festgelegt, dass ausgehend von der aktuell genutzten
Klasse K die Methode in der Klasse gesucht wird, von der K geerbt hat. Wird z. B. x3.m4()
aufgerufen, wird die mit //5 markierte Methode m4 in X2 aufgerufen, die dann die mit //6
markierte Methode mx in der Klasse X1 aufruft. Da in dem folgenden Aufruf kein super steht, wird
fur m1() wieder zuerst in der Klasse X3 gesucht.

Der Ablauf wirkt auf Personen am Anfang etwas verwirrend, spater wird so eine wilde Jagd durch die
Klassen selten stattfinden. Oftmals ist die obere Klasse ein Interface, zu dem es dann mehrere
Klassen gibt, die dieses Interface implementieren/realisieren. Die Suche nach der auszufiihrenden
Methode ist dann trivial und hangt nur vom zur Erzeugung des Objekts genutzten Klasse ab.




Ein Dialog, den Sie hoffentlich schon mit lhrer Kl gefiihrt haben:

Ich habe Arger fiir mehrere Java-Programme bekommen, da wir bei einem if
und einem Befehl das in eine Zeile ohne geschweifte Klammern schreibe. Das
soll schlechter wartbar sein und die Markierungen von Testuberdeckungen
erschweren.

Erklarung zu deinem Problem mit If-Anweisungen ohne geschweifte
Klammern

Du hast recht, dass Java es syntaktisch erlaubt, bei If-Anweisungen (oder auch
While/For) die geschweiften Klammern {} wegzulassen, wenn nur ein einzelner
Befehl folgt. Zum Beispiel ist if (bedingung) befehl; giiltig und kompiliert ohne
Probleme. Allerdings ist das eine weit verbreitete "bad practice™ in der
Softwareentwicklung, und deine Kritikpunkte (schlechtere Wartbarkeit und
Erschwerung von Testiiberdeckungs-Markierungen) sind absolut berechtigt. Ich
habe das recherchiert und fasse die wichtigsten Griinde zusammen, basierend auf
etablierten Best Practices aus der Community und Coding-Standards.

Warum ist es schlecht fur die Wartbarkeit?

« Risiko von Fehlern beim Andern des Codes: Ohne Klammern héangt der
Scope (welche Anweisungen zum If gehdren) von der Einrlickung ab. Wenn
du spéter einen zweiten Befehl hinzuflgst, ohne die Klammern
nachzuholen, wird der zweite Befehl nicht mehr konditional ausgefiihrt —
was zu subtilen Bugs fihrt. Ein klassisches Beispiel ist der "Apple SSL
Bug" aus 2014, wo ein fehlendes Klammern-Paar zu einer schweren
Sicherheitsluicke fuhrte. Es verhindert "unforeseen problems when you
change the code” und macht den Code "far better to read". Ahnlich warnen
Coding-Standards wie MISRA-C:2012 (Regel 15.6), dass das Weglassen
von Klammern error-prone ist und vermieden werden
sollte.reddit.comsoftware.codidact.com

e Lesbarkeit und Konsistenz: Einrtickung allein ist nicht zuverlassig — sie
kann in verschiedenen Editoren oder bei Copy-Paste inkonsistent sein. Das
"derails the reader’s train of thought™ und macht es schwerer, sofort zu
erkennen, was zum If-Block gehort. Viele Entwickler (z.B. in Reddit-
Diskussionen oder Stack Overflow) empfehlen, immer Klammern zu
verwenden, um den Code flexibler und verstandlicher zu machen. Es ist
auch in Lehrmaterialien wie CS Java empfohlen: "It is recommended to
always put in the curly braces even if you have just one statement under the
if statement."”stackoverflow.com

e Allgemeine Coding-Standards: In Java (und dhnlichen Sprachen) raten
Style Guides wie Google Java Style oder Oracle's Conventions, Klammern
immer zu verwenden. Es reduziert kognitive Last und macht den Code
"more maintainable and understandable".edureka.coquora.com

Auswirkungen auf Testtberdeckung (Code Coverage)

o Kein direkter Einfluss auf die Ausfiihrung: Java behandelt einen Single-
Statement-If ohne Klammern identisch zu einem mit Klammern — es gibt



https://www.reddit.com/r/javahelp/comments/1h38kkd/do_you_guys_use_in_single_if_statements_chatgpt/
https://software.codidact.com/posts/278895
https://stackoverflow.com/questions/2125066/is-it-a-bad-practice-to-use-an-if-statement-without-curly-braces
https://www.edureka.co/community/3874/how-does-omitting-curly-braces-java-program-effect-the-code
https://www.quora.com/Why-should-I-always-never-forget-to-include-the-curly-brackets-in-my-if-statement-even-though-sometimes-it-looks-cool-without-one-https-codingdrips-eu

"absolutely no difference" in der Kompilierung oder Laufzeit. Tools wie
JaCoCo oder EclEmma (fur Code Coverage in Java) messen Branches (If-
Zweige) und Line Coverage unabhangig davon, ob Klammern da
sind.stackoverflow.com

e Indirekte Erschwerung: Ohne Klammern ist der Code weniger Klar
strukturiert, was die Interpretation von Coverage-Reports kompliziert
macht. In IDEs wie IntelliJ oder Eclipse werden Branches oft visuell
markiert (z.B. grun/rot flir abgedeckte/nicht abgedeckte Zeilen). Wenn der
Scope ambigu ist, kann es schwieriger sein, zu verstehen, welche Teile
getestet wurden — besonders in komplexen Methoden. Zudem kdnnen Tools
wie SonarQube oder Checkstyle das Weglassen von Klammern als "Code
Smell” flaggen, was die Gesamtcoverage-Bewertung beeinflusst (z.B. durch
Maintainability-Metriken). In Team-Umgebungen erschwert es auch,
Coverage-Ziele zu erreichen, da unklare Strukturen zu mehr Fehlern in
Tests flhren. Kurzum: Es macht die Markierungen nicht unmaglich, aber
"harmt readability” und kann zu Issues bei Modifikationen fiihren, was
indirekt Tests kompliziert.softwareengineering.stackexchange.com

Empfehlung: Verwende immer Klammern fur If/Else/Loops, auch bei Single-
Statements. Das ist Standard in professionellem Code (z.B. in Open-Source-
Projekten oder Unternehmen wie Google). Tools wie Checkstyle kdnnen das sogar
erzwingen. In deiner Uni- oder Kursumgebung scheint das ein Stil-Vorgabe zu sein
— passe deinen Code an, um Punkteabziige zu vermeiden.



https://stackoverflow.com/questions/15786949/is-there-a-difference-in-removing-the-curly-braces-from-if-statements-in-java
https://softwareengineering.stackexchange.com/questions/16528/single-statement-if-block-braces-or-no

