
 1

Programmierung 1 TI, 15.12.2025

Fragen, Antworten, Kommentare zur aktuellen Vorlesung

Die Online-Befragung zur genutzten alternativen Veranstaltungsform und zur Lehrevaluation

ist online. Bitte ausfüllen: https://forms.gle/fZTBWPmUhK4oqLHw5. Sie werden eventuell

aufgefordert sich bei Google anzumelden, das ist nur notwendig, wenn Sie in der Bearbeitung

eine Pause machen und das Teilergebnis zwischenspeichern wollen. Die Befragung endet am

19.12., die Ergebnisse stehen in einem nachfolgenden Fragen&Antworten-Dokument auf der

Webseite der Veranstaltung.

Frage: Sollten die Tests zum Stapel eigentlich alle in einer Klasse stehen?

Antwort: Generell werden die Tests einer Klasse immer in einer Testklasse zusammengefasst.

Allerdings gibt es keine Regel, dass es so sein muss. Eine Aufteilung ist insbesondere dann sinnvoll,

wenn es sich um komplexe zu testende Methoden handelt oder um Methoden, die häufiger in einem

Projekt angepasst werden müssen. Dies ist wieder einer der Fragen mir der Antwort, es hängt vom

Projektkontext ab. Für das erste Semester gibt es keine Vorgaben. Keine Vorgabe, aber ein Wunsch

ist es, dass Testmethoden sprechende Namen enthalten, also im Methodennamen steht was mit

wem gemacht wird und welches Ergebnis erwartet wird, z. B. „testPushAufLeerenStapelErlaubt“. (Ich

habe dies bei den Messreihentests leider nicht eingehalten.)

Hinweis: Bei Programmen im Praktikum ist mir aufgefallen, dass relativ selten „this.“ genutzt wird.

Da wir jetzt alle Schreibweisen kennen, zeigt das folgende Beispiel, wie hilfreich solche

Bezeichnungen vor Variablen und Methoden sind. Da dies in der Praxis in ordentlichen Unternehmen

immer gefordert wird, sollte dieser Stil frühzeitig genutzt werden. Der Hintergrund ist, dass immer

alle entwickelnden Personen eines Teams den Code anderer lesen und bearbeiten können sollen.

Andere Programmiersprachen haben vergleichbare Regeln.

public void sprechenderMethodenname(String produktname, int id) {
 this.name = produktname; // klar erkennbar, auf der linken Seite ist
 // eine Objektvariable
 super.id = id; // klar erkennbar, auf der linken Seite ist
 // eine Objektvariable die (irgendwoher)
 // geerbt wurde
 Status.count++; // klar erkennbar, dass eine Klassenvariable
 // genutzt wird
 this.weiterleiten(id); // klar erkennbar, es wird erwartet, dass sich
 // die Objektmethode in dieser Klasse befindet
 super.markieren(this.name); // klar erkennbar, dass eine Objektmethode
 // (irgendeiner) beerbten Klasse aufgerufen
 // werden soll
 Status.sichern(this.name); // klar erkennbar, dass eine Klassenmethode
 // aufgerufen wird
}

https://forms.gle/fZTBWPmUhK4oqLHw5

 2

Kurz ergänzend zum Thema dynamische Polymorphie, dem zentralen Thema der Objektorientierung,

was genauer auch in „nur“ objektbasierten Sprachen wie Go die zentrale Rolle spielt. Durch

dynamische Polymorphie können Systeme flexibel gestaltet und einfach zur Laufzeit verändert

werden, da jeweils auf die passenden Methoden zugegriffen wird. Da es bei der Praktikumsaufgabe

33 damit vereinzelt Probleme gab, hier nochmals eine andere Beispielskizze. Die Abbildung rechts

zeigt eine Vererbungshierarchie, also X3 erbt von X2, weiterhin sind nur die Methodennamen von

Methoden angegeben, die in diesen Klassen ausprogrammiert sind. Da alle Klassen von der Klasse

Object erben, wurde sie nach oben gesetzt. Generell kann man Variablen eines Typen Objekte

dieses Typen oder einer erbenden Klasse zuweisen, also

X1 x1 = new X1();
X1 x2 = new X2();
X1 x3 = new X3();
ist alles erlaubt, hingegen

X3 x31 = new X1();
nicht. Der angegebene Typ auf der linken Seite ist relevant,

wenn es darum geht, welche Methoden aufgerufen werden

können. Für x2 ist z. B. der Aufruf x2.m2() so nicht möglich.

Die dynamische Polymorphie kommt ins Spiel, wenn für ein

Objekt bestimmt werden soll, welche Methode auszuführen ist.

Hierbei wird geschaut, welcher Typ, also welche Klasse zur

Erzeugung des Objekts genutzt wurde. Wird x1.m1()

ausgeführt, wird der mit //1 markierte Code genutzt, bei

x3.m1() der mit //2 markierte Code. Sollte dann eine

Methode nicht in der erzeugenden Klasse enthalten sein, wird

in der Klasse gesucht, von der die erzeugende Klasse geerbt hat.

Wird also x3.m3() aufgerufen, wird der mit //3 markierte

Code in der Klasse X2 ausgeführt. Dies ist auch der Grund

warum es für jedes Objekt einer neuen Klasse gilt, dass immer

die toString()-Methode ausgeführt werden kann, da sie in

der Klasse Objekt definiert wird.

Wichtig ist, dass dieser Ansatz in der zu Erzeugung genutzten

Klasse zuerst nach der Methode zu suchen bei jedem neuen

einfachen Methodenaufruf angewandt wird. Beim Aufruf von

x3.m3() wird die Methode m3() in X2 genutzt, beim

folgenden Aufruf von this.m4() wird wieder in X3 nach der

Methode gesucht und an der mit //4 markierten Stelle gefunden.

Vom erwähnten einfachen Methodenaufruf wird nur abgewichen, wenn vor dem Aufruf super

steht. Damit wird in der Programmierung festgelegt, dass ausgehend von der aktuell genutzten

Klasse K die Methode in der Klasse gesucht wird, von der K geerbt hat. Wird z. B. x3.m4()

aufgerufen, wird die mit //5 markierte Methode m4 in X2 aufgerufen, die dann die mit //6

markierte Methode mx in der Klasse X1 aufruft. Da in dem folgenden Aufruf kein super steht, wird

für m1() wieder zuerst in der Klasse X3 gesucht.

Der Ablauf wirkt auf Personen am Anfang etwas verwirrend, später wird so eine wilde Jagd durch die

Klassen selten stattfinden. Oftmals ist die obere Klasse ein Interface, zu dem es dann mehrere

Klassen gibt, die dieses Interface implementieren/realisieren. Die Suche nach der auszuführenden

Methode ist dann trivial und hängt nur vom zur Erzeugung des Objekts genutzten Klasse ab.

 3

Ein Dialog, den Sie hoffentlich schon mit Ihrer KI geführt haben:

Ich habe Ärger für mehrere Java-Programme bekommen, da wir bei einem if

und einem Befehl das in eine Zeile ohne geschweifte Klammern schreibe. Das

soll schlechter wartbar sein und die Markierungen von Testüberdeckungen

erschweren.

Erklärung zu deinem Problem mit If-Anweisungen ohne geschweifte

Klammern

Du hast recht, dass Java es syntaktisch erlaubt, bei If-Anweisungen (oder auch

While/For) die geschweiften Klammern {} wegzulassen, wenn nur ein einzelner

Befehl folgt. Zum Beispiel ist if (bedingung) befehl; gültig und kompiliert ohne

Probleme. Allerdings ist das eine weit verbreitete "bad practice" in der

Softwareentwicklung, und deine Kritikpunkte (schlechtere Wartbarkeit und

Erschwerung von Testüberdeckungs-Markierungen) sind absolut berechtigt. Ich

habe das recherchiert und fasse die wichtigsten Gründe zusammen, basierend auf

etablierten Best Practices aus der Community und Coding-Standards.

Warum ist es schlecht für die Wartbarkeit?

• Risiko von Fehlern beim Ändern des Codes: Ohne Klammern hängt der

Scope (welche Anweisungen zum If gehören) von der Einrückung ab. Wenn

du später einen zweiten Befehl hinzufügst, ohne die Klammern

nachzuholen, wird der zweite Befehl nicht mehr konditional ausgeführt –

was zu subtilen Bugs führt. Ein klassisches Beispiel ist der "Apple SSL

Bug" aus 2014, wo ein fehlendes Klammern-Paar zu einer schweren

Sicherheitslücke führte. Es verhindert "unforeseen problems when you

change the code" und macht den Code "far better to read". Ähnlich warnen

Coding-Standards wie MISRA-C:2012 (Regel 15.6), dass das Weglassen

von Klammern error-prone ist und vermieden werden

sollte.reddit.comsoftware.codidact.com

• Lesbarkeit und Konsistenz: Einrückung allein ist nicht zuverlässig – sie

kann in verschiedenen Editoren oder bei Copy-Paste inkonsistent sein. Das

"derails the reader's train of thought" und macht es schwerer, sofort zu

erkennen, was zum If-Block gehört. Viele Entwickler (z.B. in Reddit-

Diskussionen oder Stack Overflow) empfehlen, immer Klammern zu

verwenden, um den Code flexibler und verständlicher zu machen. Es ist

auch in Lehrmaterialien wie CS Java empfohlen: "It is recommended to

always put in the curly braces even if you have just one statement under the

if statement."stackoverflow.com

• Allgemeine Coding-Standards: In Java (und ähnlichen Sprachen) raten

Style Guides wie Google Java Style oder Oracle's Conventions, Klammern

immer zu verwenden. Es reduziert kognitive Last und macht den Code

"more maintainable and understandable".edureka.coquora.com

Auswirkungen auf Testüberdeckung (Code Coverage)

• Kein direkter Einfluss auf die Ausführung: Java behandelt einen Single-

Statement-If ohne Klammern identisch zu einem mit Klammern – es gibt

https://www.reddit.com/r/javahelp/comments/1h38kkd/do_you_guys_use_in_single_if_statements_chatgpt/
https://software.codidact.com/posts/278895
https://stackoverflow.com/questions/2125066/is-it-a-bad-practice-to-use-an-if-statement-without-curly-braces
https://www.edureka.co/community/3874/how-does-omitting-curly-braces-java-program-effect-the-code
https://www.quora.com/Why-should-I-always-never-forget-to-include-the-curly-brackets-in-my-if-statement-even-though-sometimes-it-looks-cool-without-one-https-codingdrips-eu

 4

"absolutely no difference" in der Kompilierung oder Laufzeit. Tools wie

JaCoCo oder EclEmma (für Code Coverage in Java) messen Branches (If-

Zweige) und Line Coverage unabhängig davon, ob Klammern da

sind.stackoverflow.com

• Indirekte Erschwerung: Ohne Klammern ist der Code weniger klar

strukturiert, was die Interpretation von Coverage-Reports kompliziert

macht. In IDEs wie IntelliJ oder Eclipse werden Branches oft visuell

markiert (z.B. grün/rot für abgedeckte/nicht abgedeckte Zeilen). Wenn der

Scope ambigu ist, kann es schwieriger sein, zu verstehen, welche Teile

getestet wurden – besonders in komplexen Methoden. Zudem können Tools

wie SonarQube oder Checkstyle das Weglassen von Klammern als "Code

Smell" flaggen, was die Gesamtcoverage-Bewertung beeinflusst (z.B. durch

Maintainability-Metriken). In Team-Umgebungen erschwert es auch,

Coverage-Ziele zu erreichen, da unklare Strukturen zu mehr Fehlern in

Tests führen. Kurzum: Es macht die Markierungen nicht unmöglich, aber

"harmt readability" und kann zu Issues bei Modifikationen führen, was

indirekt Tests kompliziert.softwareengineering.stackexchange.com

Empfehlung: Verwende immer Klammern für If/Else/Loops, auch bei Single-

Statements. Das ist Standard in professionellem Code (z.B. in Open-Source-

Projekten oder Unternehmen wie Google). Tools wie Checkstyle können das sogar

erzwingen. In deiner Uni- oder Kursumgebung scheint das ein Stil-Vorgabe zu sein

– passe deinen Code an, um Punkteabzüge zu vermeiden.

https://stackoverflow.com/questions/15786949/is-there-a-difference-in-removing-the-curly-braces-from-if-statements-in-java
https://softwareengineering.stackexchange.com/questions/16528/single-statement-if-block-braces-or-no

