
 1

Programmierung 1 TI, 7.1.2026

Fragen, Antworten, Kommentare zur aktuellen Vorlesung

Es gibt ein Video zur Aufgabe mit der dynamischen Polymorphie (Rahmen):

https://youtu.be/sZeT6XygNLU

Zur Klasse Viereck und der Aufgabe gibt es das folgende Video: https://youtu.be/zoou_8OX0YU. Wie

immer gilt, beachten Sie, dass es viele andere auch sehr gute Lösungen geben kann. Wird z. B. nach

einem Rechteck mit bestimmten Eigenschaften gesucht, reicht es oft, die Seitenvarianten A-B und C-

D bzw. B-C und A-D zu betrachten (was zum länglichen if wird und so ohne Schleife geht).

Zum Game of Life (Blatt 12) habe ich ein Video online gestellt: https://youtu.be/x4nR0n9NzcQ. Es

werden einige Ansätze diskutiert, Fehler gemacht und korrigiert sowie die optionale Aufgabe

(teilweise) gelöst.

Frage: Müssen wir in der Klausur Exceptions kennen?

Antwort: Die Antwort steht im vorherigen Fragen-und-Antworten-Dokument, ja. Der Tipp ist immer

sich das Aufgabenblatt 12 anzusehen. Die letzte Aufgabe aus der Probeklausur könnte durch etwas

mit Exceptions ersetzt werden, ist aber nur eine von vielen Möglichkeiten und vielleicht kommen

Exceptions nicht vor.

Frage: Müssen wir die Klassen Interaktionsbrett und EinUndAusgabe auswendig können?

Antwort: Das Interaktionsbrett wird in der Klausur nicht vorkommen. Von der Klasse EinUndAusgabe

sollten Sie die Methode ausgeben() kennen.

Hinweis: Bisher haben wir für eine Sammlung mit beliebig vielen Objekten einer Klasse K immer die

ArrayList<K> genutzt. Ein Ansatz der prinzipiell in Ordnung ist, aber noch viele

Optimierungsmöglichkeiten hat. Hier wird nicht der Fall betrachtet, dass eine Liste mit den

Eigenschaften, dass alle Werte eine Reihenfolge haben und jedes Objekt mehrfach vorkommen kann,

genauer betrachtet, was zu anderen Arten von Sammlungsklassen führt. Hier soll das Detail

betrachtet werden, dass immer ein Interesse nach der einfachsten und trotzdem allgemeinsten

Lösung besteht. Im Fall der ArrayList kann festgestellt werden, dass unser Interesse nur daran

besteht, dass die Elemente in einer Reihenfolge eingefügt, durchlaufen und auch gelöscht werden

können. Diese allgemeinen Eigenschaften sind in Java im Interface List zusammengefasst. Zu List

gibt es verschiedene Implementierungen und können natürlich weitere ergänzt werden. Da die Art

der Liste für uns bisher egal war, ist an jeder Stelle, an der ein Typ anzugeben ist, nicht ArrayList

sondern List anzugeben (Variablendeklarationen, Parameterlisten), da so die genaue Art der Liste

später geändert werden kann. Konkret sollten Sie z. B. ab jetzt statt

ArrayList<Hund> hunde = new ArrayList<Hund>();

genauer folgendes schreiben.

https://youtu.be/sZeT6XygNLU
https://youtu.be/zoou_8OX0YU
https://youtu.be/x4nR0n9NzcQ

 2

List<Hund> hunde = new ArrayList<>(); // import java.util.List;

Auf der rechten Seite kann Hund weggelassen werden, das ist aber nur eine abkürzende

Schreibweise und hat sonst keine Bedeutung. Diese Vereinfachung dürfen Sie natürlich in der Klausur

nutzen, dies wird aber nicht vorausgesetzt. Generell bietet Java mittlerweile einige abkürzende

Schreibweisen, die allerdings das Grundkonzept nicht verändern. Sollten Sie über das Schlüsselwort

var stolpern, können Sie es bewusst ignorieren, da es zu einem unsauberen Programmierstil führt,

da es zwar weniger zu tippen gibt, es für später den Code lesende Personen (und um die geht es fast

ausschließlich in der Programmierung) aber die Lesbarkeit verringert.

Hinweis: Java bietet einige weitere Sprachkonstrukte, die jenseits der Einführung in die

Programmierung sind. Zwei Beispiele zeigt der folgende Code.

public class Main {
 public static void main(String[] s){
 var x = 42;
 var y = x + 1;
 System.out.println(y);
 var z = y = x = 42;
 z = (y = (x = 42));
 int[] array = {21, 28, 35, 42, 49};
 for(var pos = 0; (z = array[pos]) < 42; pos ++){
 System.out.println(z);
 }
 }
}

Die zugehörige Ausgabe lautet:

43
21
28
35

Das Beispiel zeigt, dass der Typ bei Variablen nicht explizit angegeben werden muss, wenn der

Compiler auf den Typen schließen kann. Das ist für Basistypen und Klassen möglich. Statt des Typen

wird das Schlüsselwort var genutzt. Generell gibt es einige Programmiersprachen, die ohne explizite

Typangaben auskommen, was Vor- und Nachteile hat. Leider wird var gerne zur schlechten

Programmierung genutzt, um das Tippen langer Klassennamen zu verhindern. Dieser Code wird

dadurch unwartbar und ist schlecht für Projekte, was leider erst bei der nächsten Bearbeitung

auffällt. Ein Kompromiss ist der auch in ungetypten Sprachen genutzte Ansatz den Typen in den

Variablennamen zu integrieren, z. B. xInt. Dies erhöht die Tipparbeit, macht Programme aber

lesbarer, da die Information zusätzlich direkt erkennbar ist.

Weiter zeigt das Beispiel das eine Zuweisung ein Ausdruck ist, also zu einem Wert, genauer dem

zugewiesenen Wert, ausgewertet werden kann. Dabei muss eine Zuweisung x=42 vom

Zuweisungsbefehlt x=42; unterschieden werden, da Befehle keine Ausdrücke sind. Die gezeigten

Klammern deuten die Auswertungsreihenfolge an, die ohne Klammern die gleiche ist. Die Schleife

zeigt eine Nutzungsmöglichkeit einen Wert zuzuweisen und diesen Wert in einer Prüfung zu nutzen.

Der Ansatz erhöht die Lesbarkeit nicht.

